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Abstract—Heterogeneous architectures have arisen as a well-
suited approach for the post-Moore era. Among them, archi-
tectures that integrate programmable accelerators in or near
memory are gaining popularity due to the potential advantages
of reduced data movement. Such near-memory accelerators
benefit from launching a large number of fine-grain tasks to
hide memory latency while exploiting bandwidth gains. This
requires low-overhead and portable mechanisms for interfacing
of accelerators. If not managed carefully, the hard and soft
costs of host and accelerator interactions, such as programming
and device driver overheads for actuation, context transfer and
synchronization can severely limit acceleration benefits.

We present the non-uniform compute device (NUCD) system
architecture as a novel lightweight and generic accelerator
offload mechanism that is tightly-coupled with a general-purpose
processor core. Different from conventional offload mechanisms
that rely primarily on device drivers and software queues, the
NUCD system architecture extends a host core micro-architecture
to enable a low-latency out-of-order task offload to heterogeneous
devices. In the NUCD programming model, a candidate region
for offload in the code is marked with a special instruction. The
NUCD microarchitecture then accelerates function offloading,
actuation, synchronization for out-of-order parallel execution in
hardware with little driver or runtime software involvement,
while maintaining standard sequential program semantics.

Results demonstrate that the NUCD system architecture can
achieve an average performance improvement of 21%-128% over
a conventional driver-based offload mechanism. This in turn
enables whole new forms of fine-grain task offloading that would
otherwise not see any performance benefits.

I. INTRODUCTION

Specialized, heterogeneous and accelerator-rich architec-

tures have emerged as viable solutions to address the im-

pending end of traditional semiconductor scaling [1], [2],

[3]. In particular, architectures that integrate programmable

accelerators in or near memory are gaining attention due to

the data movement reduction benefits of placing the processing

elements closer to the data [4], [5], [6]. A key challenge

in such accelerator-rich systems is programmability and code

portability across architectures with diverging, heterogeneous

compositions of accelerators. Furthermore, integration of ac-

celerators into any system has to address the costs of offload-

ing, initiation, context transfer and synchronization, which can

quickly outweigh any potential acceleration benefits. This is

particularly the case for accelerators placed nearer to memory,

which rely on task-level parallelism and multi-threading to

hide latency. Being able to launch a large number of poten-

tially fine-grain tasks with little programming and offloading

overhead is critical for such near-memory accelerators.

Traditionally, interfacing hardware accelerators within a

system requires a driver specific for a targeted device [7], [8],

[9], [10]. The device driver provides a clean abstraction for

the software to handle low-level operations that interface with

the accelerator device. These low-level operations include data

movement, context management/setup, translation, actuation,

and synchronization1. Regardless of the process, the device

driver overheard must be amortized by acceleration gains

with each invocation. Moreover, each new type of hardware

accelerator within a system requires integrating a driver spe-

cific for each component with each new application, e.g. to

manage context transfer and synchronization between device

and host. These hard and soft costs of accelerator actuation

skew application designers towards coarse-grained accelerator

offload for specific applications, in direct opposition to the

needs of near-data and accelerator-rich systems.

In this paper, we introduce the non-uniform compute device

(NUCD) system architecture (SA) to enable generic, hardware-

assisted and driver-less low-latency compute offload to task-

level accelerators. The NUCD SA provides a canonical pro-

gramming model that adds a single instruction to indicate a

region of interest to offload. This instruction provides fast iden-

tification of critical information to setup an accelerator con-

text, such as code region size, memory footprint/granularity,

and output/input registers. The NUCD microarchitecture then

handles all offload, initiation, synchronization and forwarding

of an accelerator context without driver involvement. NUCD

tightly integrates with a general-purpose core’s out-of-order

mechanisms to maintain standard sequential programming se-

mantics while enabling transparent parallel execution between

the host core and accelerators.

In summary, this paper makes the following contributions:

• We propose an instruction set extension to present accel-

erator tasks to a host core in a portable manner.

• We propose a micro-architecture that implements the

nucd instruction for conditional accelerator offload and

parallel/out-of-order execution of offloaded tasks while

maintaining sequential program consistency.

• We propose a system architecture that supports light-

weight accelerator invocation, context transfer and syn-

chronization tied to the NUCD micro-architecture.

• Using a cycle-accurate simulator [11], we evaluate the

NUCD SA for near-memory acceleration of several data-

intensive applications. Results show an average system-

wide performance benefit of 21%-128% when compared

to a more traditional driver-based offload mechanism

and up to 2.6× speedup for applications utilizing fine-

1There are many variations on this process
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Fig. 1. System-wide speedup with and without offload overhead.

grain tasks that achieve no performance gains under a

traditional driver model.

The rest of paper is organized as follows. We first present

some further motivation in Section II. We then introduce the

NUCD programming model and system architecture, along

with its micro-architecture in Sections III and IV. We present

our evaluation and results in Section V, related work in

Section VI, and lastly our conclusions in Section VII.

II. MOTIVATION

Figure 1 shows the system-wide speedup of several bench-

marks (details in Section V) where lightweight, fine-grain

kernels are offloaded to near-memory accelerators with and

without device driver overhead. The speedup shown is nor-

malized to no-offload execution. As can be seen, for some

applications, the actual benefit of hardware acceleration is

undone by the cost of driver overhead. Instead of experiencing

system-wide speedup, offloading these kernels to accelerators

using the traditional device driver approach, can be worse than

not offloading them in the first place.

Moreover, in complex heterogeneous architectures where

compute elements are sprinkled throughout the memory hi-

erarchy, maintaining standard sequential program semantics

efficiently is a challenge [12]. Data forwarding and exceptions

from remote accelerators can occur naturally. This synchro-

nization and control-flow back to the host core is normally

handled by the software device driver (i.e. completion queue).

However, leaving such low-level signalling mechanisms to

software places a burden on the programmer, which could

hamper widespread adoption of heterogeneous architectures.

Therefore, a system architecture that provides portable and

transparent mechanisms for accelerator offloading while main-

taining standard sequential program semantics including ex-

ceptions during acceleration is essential.

In the next sections, we detail our approach to address these

objectives and associated design challenges.

III. NUCD PROGRAMMING MODEL

In this section, we first discuss the NUCD programming

model. The NUCD SA employs a nucd instruction to initiate

and assist in the offloading process. The programmer identifies

a region of interest (ROI) in the code by using the nucd

instruction to mark the offloaded region. This can be done

directly in assembly code or by a compiler. In both cases,

necessary and relevant offload information is prepared and

passed to the micro-architecture through the nucd instruc-

tion operands. We describe task identification and the nucd

instruction in the following.

Fig. 2. Task identification in the NUCD programming model.

Fig. 3. Register format of the nucd instruction.

A. Task Identification

Figure 2 illustrates the offload task identification in the

NUCD architecture. The programmer marks the offload

code block as a ROI for offload in the code using

nucd_start and nucd_end pragmas. The compiler in turn

inserts the nucd instruction before the instruction block for

the offload ROI in the assembly code.

B. NUCD Instruction

Figure 3 details the format and content of the three register

operands used by the nucd instruction. Register Xn indi-

cates the base offload information, while registers Xd and

Xt contain more information about the inputs and outputs

required by the offloaded task, respectively. N in register Xn

indicates the size of the offloaded region, i.e. the number

of instructions to offload following the nucd instruction. C

denotes capabilities needed by the offloaded code, and M

contains additional information such as whether the offloaded

code uses registers and/or memory locations as inputs and

outputs. The rest of the bits are reserved (R). For Xd/Xt,

information about up to four input/output registers or memory

regions can be provided. Each 16-bit segment contains 2 bits

to describe the memory granule size, 9 bits to describe the

size of the memory region given as the number of contiguous

granules of memory, and 5 bits to point to a host architecture

register index. If the offloaded task uses memory locations, this

register index will point to the starting address of that memory



3

Fig. 4. Offload flow from the host core to the accelerator and back.

location. With these four segments, nucd instructions can

conceptually support up to four live input and output registers

or memory locations. To simplify the register dependence

logic, the return value is limited to a single dependent register

in our current implementation.

C. Offload Flow

Figure 4 shows the general offload flow for executing the

nucd instruction. Once the nucd instruction and all of its

information is decoded, the micro-architecture triggers the

offload process. The host core first invokes delegation of

the ROI to the accelerator by transferring the context to the

accelerator. Once it is sent, the host core continues fetching

and executing the instructions following the NUCD sequence

(bar). At this point, the accelerator and host core can operate

in parallel. During acceleration, standard sequential program

consistency is maintained through dependency checks in the

NUCD microarchitecture. This allows host and accelerator to

execute concurrently as long as no dependencies dictated by

sequential program semantics are violated. Finally, when the

accelerator finishes the offloaded task and returns, the nucd

instruction is finally retired and the offload completes.

D. Multi-Task Offload

Note that with this support for concurrent execution with the

accelerator, the host can encounter multiple nucd instructions

in the stream and hence can offload several concurrent in-

flight NUCD tasks, as shown for the example of a parallelized

loop in Figure 2. The outer loop in the figure spawns four

NUCD tasks operating independently on the regions specified

by the inner loop. As discussed in the previous section, after

launching the first task in the first loop iteration, the host

core will continue executing instructions and additional loop

iterations. Since iterations are independent, this will result in

all four tasks to be successively launched and offloaded such

that they can execute concurrently. We will explain how we

enhance the NUCD micro-architecture to maintain consistency

among in-flight tasks in the following section.

IV. THE NUCD MICRO-ARCHITECTURE

We describe the NUCD micro-architecture extensions in

this section. At its core, NUCD extends the standard out-of-

order (OoO) micro-architecture to support a driverless offload

process where all procedures are handled by the hardware.

Fig. 5. NUCD system architecture.

Moreover, the extended micro-architecture also enables NUCD

to maintain standard sequential program semantics during

acceleration. OoO execution between the region of interest and

the host core is made possible by integrating NUCD support

into the host core’s existing dependency tracking mechanisms.

Figure 5 demonstrates the NUCD system architecture.

NUCD extensions are marked in blue color. A standard OoO

architecture is extended with an offload engine for accelerator

invocation, and dependency and retirement tracking integrated

into the existing host core load-store queue (LSQ) and reorder

buffer (ROB) structures. The offload engine is responsible

for handling the accelerator invocation and context transfer

process once the nucd instruction is decoded. The LSQ and

ROB handle dependency tracking and retirement on the return

path back from the accelerator while allowing for out-of-order

execution between offloaded tasks and the host core. Further

details of the offload process and relevant components will be

described in the following sections.

A. Accelerator Invocation and Context Transfer

Once a nucd instruction is decoded, the host core prepares

the accelerator context and performs the context transfer to

the accelerator device. All instructions prior to the nucd

instruction are retired before the nucd instruction is issued,

effectively creating a sequential barrier. This guarantees that

any dependent input registers for the NUCD offload region are

ready and have the latest architectural value before the offload

begins. Moreover, to preserve sequential memory consistency,

the host core flushes any modified lines needed for NUCD

execution to memory (i.e., from memory ranges specified

through the instruction). This guarantees that the latest data

is resident in memory when an accelerator core reads from

locations that have been modified but not written to memory

prior to offload.

Based on the register/memory information encoded in the

nucd instruction, the host core then further arranges the

context transfer by assembling a packet consisting of necessary

information for the accelerator to execute the ROI. This

includes the program counter of the first and last instruction

in the region of interest as well as values of all needed live

input registers. Once the packet is created, it will be sent to

the target accelerators work queue. After the context transfer
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Fig. 6. Extended host core architecture for invocation and context transfer.

completes, the program counter of the host core is set to the

instruction following the NUCD sequence.

Figure 6 shows the required extension on the host core

architecture to support NUCD invocation and context transfer.

A standard OoO core pipeline is enhanced with two neces-

sary components for hardware-offloading purposes: a Packet

Generator and a NUCD Scheduler. The Packet Generator

obtains signals from the decode stage that identify if a nucd

instruction is in-flight. The front-end of the core is stalled until

the context creation and context transfer is completed. In the

beginning of the offload process, the Input-Load Sequencer

issues a sequence of operations to read relevant registers such

as the program counter identifying the beginning of the region

of interest and live input registers using encoded information

from the nucd instruction. Once the relevant information is

collected from the register file, the Packet Producer assembles

the packets for accelerator offload. Afterwards, NUCD Sched-

uler takes the packets and coalesces them if necessary. When

the coalesced packet is ready, the Packet Sender selects a target

from the pool of available accelerators and offloads the final

packets to the accelerator’s memory-mapped work queue.

The offload engine also handles dependency checks to main-

tain sequential consistency among multiple in-flight nucd

instructions, i.e. multiple concurrent task offloads. In general,

different NUCD tasks can proceed concurrently if they are

independent, i.e. if their input and output data regions do not

overlap, or if there is only an overlap in their input regions.

In all other cases, i.e. if there is an overlap and hence data

dependency or anti-dependency between an output region of

one task and an input or output region of another task, the

younger task is blocked and not allowed to proceed. The

NUCD scheduler in the offload engine can be equipped with a

dependency table that tracks input and output region dependen-

cies among in-flight NUCD tasks. Alternatively, the memory

consistency tracking logic in the load-store queue (LSQ) can

be extended to provide task dependency information to the

NUCD scheduler. In either case, with such information, the

scheduler can delay any task offloads that violate memory

consistency until any older dependent task completes.

The packet generator can be seen as a small-entry in-

struction/data queue for a maximum of four dependent input

registers and context data. Moreover, the NUCD scheduler

can be designed as a write buffer consisting of few cacheline

entries for the context packet, and additional control logic for

a coalescer. Such capabilities in general already exist in a stan-

dard LSQ design. Thus, the area overhead of the offload engine

is similar to that of a conventional LSQ design. Moreover, the

main operations performed by the offload engine are majorly

register file reads and issuing memory requests. They can run

in parallel to the main pipeline and are not on the critical path.

B. Accelerator Execution and Address Translation

Once the context packet reaches the accelerator’s work

queue, the accelerator loads the context and starts execution

of offloaded code. During execution, the accelerator accesses

conventional user-space virtual addresses. As such, translation

faults can potentially occur during the execution. Any accel-

erators that need to interact with a virtual memory system

via an input/output memory management unit (IOMMU) often

can only efficiently run relatively regular applications [13],

[14], [15], which are the opposite of the types of applications

that benefit from near-memory acceleration. In fact, translation

overheads for accelerators can degrade performance by up

to 50% [16]. Hence, low-overhead translation mechanism in

accelerator devices, especially near-memory ones, are a critical

component for performance.

The NUCD SA utilizes a simplified mechanism to mitigate

overhead for address translation and memory management

on the accelerator side. User-space virtual addresses accessed

by offload code are allocated to a physically contiguous

memory region by the OS. Translation from virtual to physical

addresses on the accelerator core is accomplished using the

physical base address of each set of contiguous pages (often

termed range-based translation [17]). If a page is not loaded

in memory, the fault is taken in the host core, freeing the

accelerator from having to tolerate memory page faults. In the

NUCD SA, the OS memory/slab allocator is modified to allo-

cate virtual ranges that are also contiguous in physical space,

which is a common existing approach for many networking

and accelerator applications and supported by the Linux kernel

allocator kmalloc by default [18]. A different design with the

ability to handle non-contiguous physical address spaces can

also be provided. However, this requires virtual-to-physical

translation support and overhead in NUCD devices.

C. Accelerator Retirement and Sequential Consistency

While the accelerator executes the ROI, from the host core’s

perspective, the nucd instruction continues to execute and

retires only when the ROI completes on the accelerator. This

enables the host core to resume execution of the following

instructions past the NUCD sequence. Once execution of the

ROI on the accelerator is done, a completion signal is sent

to the core from the accelerator devices. Moreover, if the

acceleration produces an output, the value of the corresponding

accelerator register is transferred back to the host core along

with the completion signal. The host core then retires the

nucd instruction and the entire offload process completes.

To maintain sequential program semantics during concurrent

accelerator and host executions, the NUCD SA uses the

support of existing out-of-order host core mechanisms for

consistency management, namely scoreboarding and the load-

store-queue (LSQ) for tracking of read-after-write (RAW)

dependencies, and the Reorder Buffer (ROB) for handling of
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write-after-write (WAW), and write-after-read (WAR) output,

and anti-dependencies. We explain how different dependency

tracking and sequential consistency management is supported

by scoreboarding, LSQ, and ROB in the following subsections.

1) Scoreboarding: For consistency tracking of RAW de-

pendencies between output registers produced by the offloaded

task accessed by any following instructions executed on the

host core, NUCD makes use of the standard scoreboarding

mechanism. Any instructions past the NUCD sequence that

are dependent on the output register of the offloaded task will

be stalled in the issue stage until acceleration finishes.

2) Dependency Tracking with LSQ: The LSQ further tracks

RAW dependencies between any subsequent memory load

instructions dependent on the acceleration results. Any reads

originating from the host core to NUCD output memory

locations that are potentially written by the offloaded task are

blocked by the LSQ while independent reads can progress

to the issue stage normally. This is achieved by tracking the

address range of the output region to which a NUCD task

is writing results. The LSQ is augmented to store the base

address and number of consecutive pages that are required by

the NUCD offload task. Then, every load from the host during

acceleration will be checked against the NUCD task’s output

region to identify whether a RAW dependency exists. In case

of a dependency, the LSQ blocks the instruction and schedules

it only once the acceleration completes. Any independent

load/store instructions can progress without waiting for the

NUCD task to retire. This mechanism maintains memory

dependency-tracking between the accelerators and the host.

3) Sequential Retirement with ROB: Finally, the ROB

ensures that instruction retirement and hence committing of

data to registers and memory follows the program order

to guarantee sequential consistency of memory and register

writes and thus avoid any WAW and WAR hazards between the

host CPU and accelerator. While any younger and independent

instructions after the nucd sequence can be scheduled to

issue, their retirement in the ROB has to wait until the

acceleration finishes execution. Once the NUCD kernel has

finished, a signal is sent back to the ROB to indicate that the

operation completed or threw an exception. If an exception

is thrown, the operation is handled based on the offset from

the NUCD program counter. If no exception has occurred,

the return register is committed as the ROB head reaches the

nucd instruction. Note that the near-memory accelerator will

have committed all its memory data by the time it finishes

execution and notifies the ROB. The nucd instruction is then

retired, deallocated and the operation completes.

An alternative design choice can opt for a less conservative

synchronization mechanism. It is possible to speculatively let

the nucd instruction commit from the ROB such that it will

not block any younger instructions from committing. However,

this requires a checkpoint mechanism to detect violations

and safely roll back the architectural state. Prior work has

used eviction timing of any modified lines under speculative

execution to detect violations and roll back accordingly [19].

In our work, we do opt for the ROB as synchronization point

due to its simpler design.

Fig. 7. LSQ and ROB snapshot of the host core during acceleration. An
instruction marked as red in the LSQ is blocked until NUCD acceleration
completes to satisfy dependencies. Other instructions can execute subject to
sequential ROB retirement.

4) Putting It All Together: Figure 7 illustrates an example

of LSQ and ROB operation during offload execution. Once

decoded, an entry is allocated in the ROB for the nucd

instruction, similar to standard decoding and ROB allocation

in the OoO pipeline. In addition, an entry for the nucd

instruction is allocated in the LSQ. It contains information

about the memory locations to which the NUCD task writes.

The offload process then begins as described in Section

IV-A. Once the context transfer completes, the accelerator

starts execution of the ROI. At the same time, the host

core program counter will branch to the code following the

offloaded region (bar, with respect to Figure 4). The host core

then decodes instructions and allocates ROB and LSQ entries

from there. On encountering a load instruction ldr x11,

[x10] that reads a value from the address region dependent

on the NUCD task, the LSQ will block the execution of

the load and wait until the NUCD-offloaded task completes

(marked in red), therefore avoiding memory consistency vi-

olations. By contrast, the following instruction ldr x12,

addr_B reads a value from a memory location addr_B,

and since there is no read-after-write dependency between the

instruction and the NUCD-offloaded task, the LSQ can pro-

ceed and issue the instruction. Moreover, while the following

ldr x13, [x12] does not depend on the NUCD-offloaded

task, it has a read-after-write dependency with the previous

instruction (a.k.a ldr x12, addr_B). Thus, it will execute

once the preceeding instruction completes. Afterwards, the

host core performs a store to addr_B, which is independent

from the NUCD task. As such, the LSQ will go ahead and

issue it, subject to sequential retirement in the ROB. The

process repeats until there are no more instructions or ROB

or LSQ become full.

On task completion, the ROB ensures that retirement from

the accelerator to the host core follows sequential order. As

shown in Figure 7, while any younger instructions after the

nucd call are able to issue and execute, their retirement in the
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ROB has to wait until the acceleration finishes and the nucd

instruction retires.

All in all, together with scoreboarding and LSQ tracking,

retirement and committing of instructions in program order in

the ROB enable the NUCD architecture to maintain sequential

memory and register consistency while overlapping accelerator

with host core executions. This guarantees standard sequential

program semantics during acceleration while exploiting any

additional concurrency available on the host core.

V. EXPERIMENTS AND RESULTS

We evaluate the NUCD system architecture using the gem5

full-system simulator [11]. A 64-bit Arm architecture was used

as a baseline in a configuration to emulate an out-of-order

host core with similar characteristics to an Arm A57 [20].

In-order 64-bit Arm cores (with similar characteristics to an

Arm A53 [21]) in configurations with 4, 8, 16, and 32 cores

are employed as near-memory accelerators on a cross-bar

network interposed between the main coherent network and

the HBM1 memory controller (with 8 primary channels). This

configuration enables the memory controller to use a standard

interleaving pattern while allowing the accelerator and host

cores to access the memory fabric at full bandwidth. We use

HBM1 as the main memory in a standard configuration [22].

We compare accelerations under NUCD offload with a driver-

based mechanism that uses traditional memory-mapped device

actuation along with standard doorbell interaction mechanisms

following the driver implementation described in [7]. We

model NUCD offload engine and context transfer overhead

assuming standard register file and memory transaction costs.

All simulation parameters are summarized in Table I.

We use several fine-grain benchmarks that represent key

data-intensive kernels widely used across applications. Table II

summarizes the parameters, inputs, and offloaded ROI char-

acteristics of the benchmarks. Meabo [23] is a multi-phased

memory-intensive benchmark. Phase2 (meabo2) and Phase5

(meabo5) are selected for the evaluation. Both phases access

memory using a random indirection vector. They employ one

and two indirection vectors, respectively. Ebox [24] is an

extended box filtering approximation of Gaussian convolution.

Stride [25] is a benchmark stressing memory systems with

several light compute kernels. SPATTER [26] is a benchmark

for timing scatter/- gather kernels. Finally, SpMV [27] is

the sparse matrix-vector multiplication in CSR format. We

manually partition each ROI call into as many tasks as the

number of accelerators, launching one task to one accelerator.

A. Speedup

Figure 8 shows the system-wide speedup across different

applications with 4, 8 or 16 accelerator cores. We compare the

original host-core execution to execution with different near-

memory accelerators under driver-based vs. NUCD offload.

The figure also indicates the ideal theoretical speedup that

can be achieved assuming zero offload overhead for each

accelerator configuration.

Results show that accelerations with NUCD offload can

yield up to 3.6x speedup across different applications and

accelerator configurations, averaging 21%-128% performance

TABLE I
SUMMARY OF SIMULATION PARAMETERS.

Host CPUs Near-Memory Accelerators

ISA ARMv8 (64-bit) ARMv8 (64-bit)

Core Configuration 1 OoO core [20] 4-32 in-order cores [21]

L1 I/D Cache 32 KB, 2-cycle 32 KB, 2-cycle

L2 Cache 1 MB, 12-cycle N/A

HBM Config HBM Gen1 [22]

HBM Peak-BW 128 GB/s

TABLE II
WORKLOAD PARAMETERS.

Total ROI

Benchmark Option Input Dyn. Inst. Dyn. Inst. Calls

Meabo2 [23] Phase2 8,000 elements 73,235 73,100 1

Meabo5 [23] Phase5 8,000 elements 89,234 89,102 1

Ebox [24] Stride 8 8,000 elements 392,909 392,701 1

Stride [25] Distance 8 4,096 elements 1,506,743 40,129 8

Spatter [26] Distance 8 8,000 elements 83,770 83,450 1

SpMV [27] N/A circuit 1 (D) 277,875 277,650 1

improvement over driver-based offload on 4-16 accelerator

cores. In all cases, NUCD speedups are equal or close to

the theoretically achievable maximum. Closer observation of

meabo2, meabo5, stride, and spatter shows that NUCD-based

offload can unlock performance benefits that do not exist with

device driver offload. While driver-based offload results in

performance slowdown compared to original host execution

even when using 16 accelerator cores, the NUCD mechanism

can achieve 1.05x-2.6x speedup for such configurations. Note

that even with ideal offload, no performance benefits are

observed from offloading to 4 devices across most applications

due to the limited compute and reduced bandwidth available

with fewer of the simpler accelerator cores. In case of spmv,

significant slowdowns are seen that do no improve even when

the number of accelerator cores increases. This is due to the

data access behavior and unbalanced work distribution in spmv

contributing to poor performance on the in-order accelerator

cores and limited task-level parallelism among cores.

B. Offload Overhead

In general, driver offload of a single task to one accelerator

core can take up to 40k cycles; predominantly stemming

from the overhead of memory-mapping accelerator to the

user program. This overhead grows proportionally with the

number of tasks and cores. By contrast, in the NUCD SA,

such overhead is minimized by delegating much of the process

to the hardware, requiring only 150-200 cycles per offload

with the configuration given in Table I. Figure 9 illustrates

the fraction of execution time spent on offload for different

applications under different offload mechanisms. Driver-based

offload can occupy up to 70% of total execution time, as

seen in spatter and ebox. Driver overhead averages 18%, 35%,

and 47% for 4, 8, and 16 accelerator cores respectively. By

contrast, the hardware-assisted NUCD offload mechanism is

able to restrict offload overhead to less than 4% of the total

execution time. This in turn results in significantly greater

system-wide speedup as shown in Figure 8. Note that due

to the slowdown experienced under offloading and the longer

runtime of the benchmarks, offload overhead occupies only a

smaller fraction of total execution time in spmv and stride. In

general, NUCD offload benefits fine-grain tasks the most. In

coarse-grained tasks, higher offloading costs are more easily

hidden by the longer overall execution times.
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Fig. 8. Speedup under different offload mechanisms with varying accelerators.

Fig. 9. Fraction of execution time spent on offload.

C. Scaling

Figure 10 further shows the speedup scaling under driver-

based and NUCD acceleration as a function of up to 64

accelerator devices, normalized to the speedup with one accel-

erator core. We observe that meabo2 under NUCD acceleration

scales very well as the number of accelerator devices increases.

Acceleration under 8 and 16 cores results in 6.8x and 11x

speedup gain, respectively, while utilizing 32 cores improves

performance by 16x. By contrast, a driver-based offload of

meabo2 is unable to provide similar scalable performance

benefits. As shown in Figure 8, achievable speedups only

increase minimally when adding up to 16 cores. This is due

to increasing driver overhead outweighing the acceleration

benefits with additional cores. Acceleration with 32 cores in

turn results in 20% performance slowdown over execution

with 16 cores as acceleration benefits saturate while driver

overheads continue to increase proportionally.

On the other hand, stride experiences a relatively constant

speedup as the number of accelerator devices increases for

both NUCD and driver offload. While acceleration on four

cores in NUCD can boost performance by 1.9x, performance

benefits saturate when using 8 or more cores in both cases.

This is due to a limited number of instructions within the ROI

as shown in Table II, where the offload overhead occupies only

a smaller fraction of total execution time in stride.

Note that in all cases, without support for out-of-order task

offload in NUCD, only one task could be in flight at any

time, and speedups would be limited to a single accelerator.

Out-of-order execution allows independent NUCD tasks to be

simultaneously issued to achieve scalable performance.

VI. RELATED WORK

The increasing demand for energy-efficiency and high per-

formance has spurred a growing number of hardware acceler-

ators as essential parts of future computing systems. Several

Fig. 10. Performance scaling with number of accelerator cores on meabo2

and stride applications.

designs and optimizations have been proposed for accelerators

in various domains [1], [2], [3]. A number of prior works have

also shown the performance benefits and energy savings of

near-memory accelerators [4], [5], [6]. While the performance

gains demonstrated by these works are promising, they place

less emphasis on the efficiency of integrating and interfacing

such accelerators with the host core.

In practice, several software and/or hardware extensions are

required to integrate an accelerator into a system architec-

ture. Hardware optimizations to integrate accelerators typically

begin with a mechanism to communicate “jobs” between a

host/master and the endpoint device. This is often in the form

of a ring buffer or other form of synchronized communication

(e.g., VIRTIO [28]). Our mechanism replaces the ring-buffer,

however, it does not replace virtualization standards such as

SR-IOV (single-root IO Virtualization [29]), our mechanism

works with these.

Several software approaches exist in literature that at-

tempt to optimize various aspects of the CPU-accelerator

runtime/system software interface. Gdev [9] allows GPUs to

access main system memory directly and has been shown to be

beneficial for low-latency applications. PTask [10] provides an

OS abstraction for GPU computing resource and data transfer

management. It presents a dataflow programming model that

exposes information to enable the OS kernel to better assist

with performance isolation and data movement coordination.

Finally, Pagoda [30] presents a runtime system that dynami-

cally manages GPU resources to improve utilization for narrow

kernels with limited parallelism where the actual time spent

executing (vs. offload overhead) is relatively low. While the

above approaches have demonstrated improvements in data

and resource management, they do not address optimization

of the actual offload process.

Several hardware mechanisms have been proposed to mit-

igate accelerator offload costs. Lustig et.al. [31] present fine-

grained host CPU-accelerator synchronization. Using full-

empty bits to track data transfer completion, the accelerator

can process data as soon as it is ready without waiting for

full offload completion. While this can benefit by amortizing

data transfers during offload and kernel computation, the

offload process itself is still performed by the runtime soft-

ware. Other mechanisms such as AMD’s extended task queue

mechanism [32] and Arm’s Revere System Architecture [33]

aim to reduce the overheads of interacting with device work

queues. However, the actual offload overhead itself is not

fundamentally reduced. Other approaches enhance the ISA to
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support fine-grain accelerator offload through the host core [4],

[34], [35]. However, they target instruction-level offloading

and thus are not able to support light-weight tasks that consist

of instruction streams larger and more complex than just a

simple arithmetic operation.

In summary, existing works fall into either traditional

driver-centric offload, hardware-based offloading targeted at

instruction-level granularity, or hardware-software mecha-

nisms to accelerate work queues. Driver-based approaches

tend to suffer from the non-trivial latency caused by the

runtime software and system overhead that can limit the benefit

of offload for lightweight tasks. Existing microarchitecture-

driven mechanisms are limited to instruction-level offload,

and are typically unable to handle lightweight tasks. Lastly,

mechanisms that focus solely on acceleration of the work

queue tend to reduce the overhead of initiating an accelerator,

but do very little for the core-side invocation and targeting of

that accelerator.

VII. SUMMARY AND CONCLUSIONS

We proposed the NUCD system architecture as a gen-

eral and hardware-assisted accelerator offload mechanism that

provides low-latency and low-overhead offload to acceler-

ators. The NUCD system architecture incorporates a task

dispatch mechanism that is tightly coupled with the core

micro-architecture to perform context transfer, actuation, and

synchronization integrated with out-of-order execution. This

dispatch mechanism includes features that ensure memory

consistency for accelerators outside of the coherence network

using a common interface. The NUCD architecture allows

maintaining standard sequential program semantics under con-

current acceleration coordinated in hardware from a main core.

Results show that the NUCD architecture can improve perfor-

mance by 21%-128% across different applications compared

to traditional driver-based offload.
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