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ABSTRACT

Sparse data and irregular data access patterns are hugely important

to many applications, such as molecular dynamics and data analyt-

ics. Accelerating applications with these characteristics requires

maximizing usable bandwidth at all levels of the memory hierarchy,

reducing latency, maximizing reuse of moved data, and minimizing

the amount the data is moved in the irst place. Many specialized

data structures have evolved to meet these requisites for speciic

applications, however, there are no general solutions for improv-

ing the performance of sparse applications. The structure of the

memory hierarchy itself, conspires against general hardware for

accelerating sparse applications, being designed for eicient bulk

transport of data versus one byte at a time. This paper presents a

general solution for a programmable data rearrangement/reduction

engine near-memory to deliver bulk byte-addressable data access.

The key technology presented in this paper is the Sparse Data Re-

duction Engine (SPDRE), which builds previous similar eforts to

provide a practical near-memory reorganization engine. In addition

to the primary contribution, this paper describes a programmer

interface that enables all combinations of rearrangement, analysis

of the methodology on a small series of applications, and inally a

discussion of future work.

CCS CONCEPTS
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1 INTRODUCTION

Scientiic computation promises to better the state of the human

race in ways previously not possible [21]. Some of the biggest and

most interesting problems contain sparse and irregular data ac-

cess patterns [28, 29]. Sparse data is found in domains ranging
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from machine learning [17] and data mining [33] to high perfor-

mance computing [9]. There has been much work on data structure

organization for the most eicient access from a software stand-

point [8, 22], however, little has been done at the hardware layer

except for a few notable eforts [5, 24]. Past studies have shown

that much of the data brought into the last level cache goes un-

used before eviction [30]. Through these studies it is shown that

even applications with relatively regular data access patterns could

utilize bandwidth more efectively. With the projected death of

Moore’s Law almost upon us, bandwidth and low latency cache

memory must be used as optimally as possible. Reducing superlu-

ous data movement, so called łDark Bandwidthž [2], has a direct

impact on performance for a wide variety of applications critical

to the modern world. Dark bandwidth also has a direct impact

on power consumption, each byte moved consumes energy. This

work’s primary contribution is a scalable method of rearranging

data near-memory to bring in only what is needed. The key technol-

ogy, the Sparse Data Reduction Engine (SPDRE), is to this authors

knowledge, one of the irst such engines that works within a stan-

dard page-based virtual memory system and is capable of operating

in a non-uniform memory access environment while not breaking

standard coherence models. In addition to the primary contribu-

tion, this paper includes a programmer interface that enables all

combinations of rearrangement, analysis of the methodology on a

small series of applications, and inally a discussion of future work.

The energy of computation is now largely dominated by data

movement. The energy required to load, compute, and write, using

a 7nm process, has been published in academic literature at around

50pj [4]. The majority of this energy, approximately two thirds of

it, is consumed by the random access memory and interconnect.

While it is clear that industry research is driving lower energy

memory technology, the advancements are at a much slower pace

than compute technologies. This observation was made in 1995,

and still holds true today [34]. In the absence of signiicant tech-

nological breakthroughs, there are many things that can be done

to improve the overall utilization of the bandwidth provided by

modern systems. Some have proposed byte addressable memory as

a solution [32] to bandwidth and cache utilization. This idea imple-

mented directly as byte addressable is likely impractical given the

ratio of commands to data that would result. This paper proposes a

hardware methodology that enables bulk byte addressability, which

is likely far more scalable. It is an extension of work by Gokhale et

al. [23] with additions to work within modern systems (i.e., with

paging, virtual memory, non-uniform memory access, heteroge-

neous memory types, etc.) that have largely not been addressed by

previous works.

https://doi.org/10.1145/3132402.3132431
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As compute systems scale out, the problem of providing usable

bandwidth at a reasonable power level only multiplies. This prob-

lem, irst identiied as a major obstacle within the high performance

computing community, is now recognized as an obstacle to data

center density and eicient scalability [18]. Memory systems, in-

cluding all the technology necessary to feed data to a processor

(e.g., memory controller, DRAM bus, memory modules, non-volatile

storage) have evolved around the philosophy that bulk transport

is the most eicient way to provide data to the processor cores.

Software on the other hand, often needs smaller grains of data. As

an example, modern random access memory often delivers data

to the last level cache (LLC) in 64-byte blocks, however, program-

mers often write software using, at most, 64-bit data types, leading

to a 12.5% utilized cache line as the worst case. Data structures

have evolved to attempt to provide better utilization of the bulk

transfers that occur in hardware, however, the best eforts often

fall short and those that work are not generalizable [31], being tied

to either low-level hardware features or to speciic properties of

the algorithm. Many previous studies demonstrate that cache line

utilization, is in general, low [30]. Cache line utilization at the LLC

is an excellent proxy for utilization of the bandwidth delivered to

the processor core which the technologies described in this paper

aim to improve.

Sparse data can come in many forms outside of the canonical

matrix illed with mostly zeros. Compressed matrix representations

often trade space for indirect memory accesses. Even when all the

entries within a given range of memory are illed with nonzero

values, the pattern of computation might access every other byte.

This type of sparseness falls into another category, known as ir-

regularity [12]. This paper will lump both of these categories into

sparse data, making a distinction only when necessary. At the core

of the sparse data problem is another widely discussed problem:

data movement [7]. This work considers these two problems syn-

onymous. With the combined deinitions solidiied, a metric can be

be developed to assess the impacts of sparseness of an application’s

access patterns on the hardware. Two heavily related metrics that

impact sparseness are cache line utilization and reuse distance of

data. Cache line utilization is a proxy for the efective bandwidth

at each level within the memory hierarchy (e.g., L1-D cache line

utilization is a proxy for L1-D to L2 bandwidth utilization). Reuse

distance inluences cache line utilization. As an example, if a line is

brought into the L1-D from the L2, but only half of it is used before

evicting it back to the L2 then the bandwidth utilization from the

L1-D to L2 is only 50%. If that line is reused at the L2 and brought

back into the L1-D on subsequent accesses then that line’s impact

on L1-D to L2 bandwidth is still the same as before, 50%. Its reuse

distance was high enough that the full cache line couldn’t be reused

at the L1-D. A shorter distance could have increased the efective

L1-D bandwidth by enabling that line to be 100% utilized before

eviction. In efect, sparseness can be local in real hardware, as the

aforementioned example illustrated. This oft-overlooked interplay

of reuse and utilization can lead to excessive cache line movement

in exclusive caches. The technique described in this paper aims to

reduce sparseness by improving cache line utilization and maxi-

mizing reuse of data within the memory hierarchy by putting the

programmer in charge of what data is made contiguous.

Data rearrangement broadly refers to any technique that takes a

non-contiguous section of memory and makes it contiguous by ex-

ecuting a mapping function. Contiguous data can be fetched using

eicient bulk data movement techniques (e.g., DRAM burst [16]). In

addition to making data movement more eicient, packing data also

pays dividends within the cache hierarchy, increasing the efective

cache size by compressing the contained data before it ever reaches

the cache. With packed data, it also becomes more eicient to use

vector operations. Bulk synchronization is a term used in high per-

formance computing to describe a split-apply-combine technique

of programming sometimes synonymous with MapReduce. At a

high level, the aforementioned techniques: split a larger data set

(either virtually or physically), functions act independently and in

parallel on the split data, and lastly the results are combined. It

would be extremely useful to have hardware acceleration for this

splitting which is often done using a memory copy orchestrated

by the main CPU core. The SPDRE enables multiple non-aliasable

memory windows to be created out-of-core, freeing the core for

actual compute versus data movement (overlapping execution and

communications). The following sections will elaborate on the back-

ground, methodology, and initial evaluation results for the SPDRE.

2 BACKGROUND

Data rearrangement requires some compute to be placed in or near

memory in order to calculate ofsets, memory addresses, iterate

over loops, etc. At the most basic level this could be done by a sim-

ple state machine, however, more general rearrangements require

slightly more programmable compute. In the broadest sense, data

rearrangement looks like many of the processing in-/near-memory

(PINM) concepts produced by academic and commercial research

entities over the past ifty years. Dozens of incarnations of PINM

technologies have been tried, with only burgeoning niche success

to date (e.g., Emu Solutions [10]). Notable systems include Compu-

tational Ram [11], Terasys [14], and DIVA [15] to name but a few.

A summary of more current PINM technologies is given by Zhang

et al. [35] and Balasubramonian et al. [1].

These earlier PINM systems largely were non-integrable with

modern commodity operating systems (e.g., BSD Unix, Linux, etc.).

While more advanced in physical design, the current generation

of compute near data systems largely have the same issue. The

systems to date that appear more viable rely on an accelerator of-

load approach where memory space is partitioned between the

near-memory processors and the main compute system where data

movement is orchestrated via explicit movement commands. Data

rearrangement has also been attempted in several past forms. The

most notable attempt to date has been the Impulse memory con-

troller [5], which packs cache lines through scratch-pad memory

within the memory controller. More recent work, such as DReAM [?

], ofer limited solutions that address within bank page-conlicts.

The closest work related to that presented here is the data rearrange-

ment work of Lloyd and Gokhale [23].

A primary concern with past systems, and something that largely

stands between concept and commercial success of true in-memory

compute (see Section 2.1 for deinition) is the cost of commodity

memory chips. Memory modules are relatively cheap, adding ad-

ditional logic to memory (for in-memory processing) would make
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the modules cost prohibitive. Until recently, the performance of

the legacy memory system that we have today has not been an

issue. Modern compute architectures are now orders of magnitude

faster than memory. Adding to the gulf between performance of

memory and compute is the energy eiciency gap. Memory con-

sumes far more energy than compute. These conditions make it

far more likely that a PINM solution, of which data rearrangement

is one type, will succeed. Going forward, it is more appropriate to

refer to this class of technologies as processing in-/near-memory

(PINM) [2] versus simply as processing in-memory (PIM).

Outside of economics and system software other major hurdles

exist for data rearrangement hardware: coherence (speciics ad-

dressed in Section 2.1), translation for page-based virtual memory,

and programmability (addressed in Section 3). With a coherent

cache network [27], data can exist within the cache that must be

lushed in order to have the most valid copy in memory before

rearranging, this must be dealt with carefully to avoid hurting

performance. The virtual memory issue, briely discussed in [2],

limits the amount of data that can be rearranged over without con-

sulting an external facing memory management unit. This can be

costly, and is largely avoided in this work by assuming contiguous

huge pages whose contained physical addresses can be calculated

through a simple ofset calculation.

The next subsections will describe the types of rearrangement

that are possible followed by a description of the API used.

2.1 Types of Rearrangement

There are many potential locations within a memory hierarchy

to perform computation, and subsequently data rearrangement.

This complicates the deinition when discussing hardware speciics.

In general, the various locations of a memory hierarchy can be

partitioned into categories based upon their proximity to the host

compute element (processor core). These categories are: in-cache,

in-register, in-memory controller, and in-memory. All of the afore-

mentioned categories also have a łnearž equivalent, where instead

of direct integration at the circuit level, compute elements for the

rearrangement device are integrated on a common bus integrated

with the component. As an example, a vector processor integrated

at the sense ampliier level would be an in-memory device, whereas,

a compute element located within an cache attached at the level of

the read and write ports is considered łnearž memory. Each hier-

archy location has very speciic characteristics which contribute

unique lavors to the resulting data reduction engine. In order to

provide a standardized label to rearrangement types, this work will

use the convention that the destination of the memory from the re-

arrangement engine will receive the name, as an example, Diagram

A from Figure 1 shows an in-register arrangement because the work

is typically done within the load queue and the destination is the

register ile. Data rearrangement is properly considered a subset of

broader PINM technology.

In or Near-cache/-Register Most rearrangements available

on modern processors fall into the in-/near-cache or in-

register category. They are commonly termed gather-scatter

operations. These types of instructions are useful for dense

workloads that can be blocked for maximal usage of cache

lines brought into the compute core between LLC and the

L2

L2

DRAM

core
L1

cache lines

gather

HBM
DRAM

L1
core

A) No reduction in data movement

B) Lots of data movement reduction

NV

Page - SPage - S’

Page

Figure 1: Diagram A shows an in-register rearrangement.

When compared to an near-memory rearrangement shown

in Diagram B, near-memory rearrangement can often pro-

vide: fewer ills to the cache, better cache line utilization,

lower latency between gather operations, and reduced en-

ergy of data movement.

load queue. These instructions, however, do nothing to im-

prove bandwidth utilization for sparse data applications with

poor cache line utilization. As a comparison between near-

memory rearrangement, Figure 1 shows an example of an

in-register arrangement.

In-memory-controller In-memory controller (IMC) rearrange-

ment is a technique somewhere in between simple scatter-

gather operations and full in-memory storage rearrangement.

IMC is deined as a means to make contiguous limited sec-

tions of memory via a hardware scratchpad located at the

memory controller. These techniques often use the unused

section of the virtual address space (most architectures uti-

lize less than the full 64-bits of the possible address range) to

map to the scratchpad region. There are advantages and sig-

niicant drawbacks to this approach which will be discussed

in Section 4. This technique reduces overall memory traic

through packing of data into cache lines from the memory

controller forward. The length of the rearranged segment of

data is limited by the scratchpad size. There are considerable

synchronization issues that must be handled when using

this approach for multicore systems such as, how to share

memory from a local IMC scratchpad to other cores (poten-

tially on other sockets) and how to keep the memory within

the scratchpad coherent with the memory from which it was

originally pulled from (non-contiguous memory).

In or Near-memory/-storage The rest of this work focuses

on rearrangement near a memory device that is not fully

connected to the on-chip coherence network. On-die mem-

ory devices such as the hybrid memory cube (HMC) and

high bandwidth memory (HBM) fall into this category, as

do standard DIMMs and non-volatile storage media. In or
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Near-memory/-storage data rearrangement has the poten-

tial for eicient fully programmable rearrangements with

more signiicant eiciency gains than either of the afore-

mentioned approaches. The logic behind this increase in

programmability is simple: more compute logic can be made

available to drive the rearrangement versus closer to the

core itself. The challenges to be addressed in order to make

rearrangement function at a systems level, however, are far

greater for this category of device. The most signiicant of

these challenges are: memory coherence, synchronization

(explained in detail below), the API through which the pro-

grammer directs the rearrangement, and lastly translation

itself. The rest of this work will focus on high bandwidth

memory, on-socket rearrangement, however, almost all of

the techniques are fully applicable to both on or of package

memory and in-/near-storage rearrangement.

Before any details are discussed for SPDRE and near-memory

rearrangement, a few assumptions must be made clear. When dis-

cussing SPDRE, it is necessary to refer to more than a single view

of the memory space. The original non-contiguous memory to be

rearranged from is referred to as S , the rearranged contiguous space

S
′. When multiple regions S ′ exist, a subscript will be used S

′

i
to

denote that fact. Further assumptions are enumerated below:

(1) Any rearrangement from a non-contiguous space S to a

contiguous space S ′ will result in a new physical mapping

for S ′ (and potentially a new virtual memorymapping, which

is the approach taken in the simulator discussed later in this

section).

(2) The contiguous region S
′ has the ability to map back (for

synchronization) to the original non-contiguous space S .

(3) The non-contiguous space S from which S
′ is constructed

could be located on multiple physical memory pages. In

general, these could be non-contiguous physical pages. For

the SPDRE, either contiguous pages or one huge page to

gather from is assumed (future work looks at more eicient

mechanisms to utilize non-contiguous pages for the memory

region S). It was found that for most workloads, utilization

of the input/output memory management unit (IOMMU)

would bottleneck rearrangement [2].

(4) Data in region S is either not interleaved across multiple

memory controllers, or is behind a logic controller which

gathers from internal interleaved memory channels or ele-

ments.

The term sparse data reduction engine (SPDRE) (generically

shown in Figure 2) will be understood to consist of the following

components:

(1) a central compute element that has the capability of sending

a rearrangement command to a device which is not on its

cache coherence network

(2) a compute element or state machine capable of recognizing

the command at (or near) the memory device and capable

of translating addresses based on physical ofsets from a

base page address (either through ofset calculations or other

means)

(3) capable of signaling when the rearrangement is done (or the

irst page of S ′ is available) for the host processor to load

data from (the SPDRE, as well as many PINM technologies

are page-atomic)

Coherence issues arise when making S contiguous in S
′ as in

Figure 2 when cache lines are resident in a modiied state within the

host compute element which contain addresses that map to region

S prior to issue of rearrangement command. This could result in

a read-after-write with reference to S or a write-after-write if S ′

is synchronized back to S and the host copy is modiied as well.

For both of these cases, the cache lines that contain elements of S

resident within the coherence domain of the shared memory space

must be lushed to memory to ensure that S ′ contains the most

recent values (i.e., sequentially consistent memory view). There

are various techniques to reduce the number of lushes necessary.

These will not be the subject of this work directly, however, lushing

only modiied lines from S to S ′ can be done in an eicient manner.

When programming the SPDRE, one requirement that enables more

eicient management of coherence is knowing the bound of S prior

to issuing a rearrangement command.

Aside from synchronization within the coherence network, there

are also issues with synchronization within the SPDRE device itself

between memory segments. To avoid confusion, the term synchro-
nization is used from this point on within the text to refer to the

synchronization issues within the SPDRE unless explicitly stated.

Synchronization issues arise within SPDRE-like devices near mem-

ory when the values within S ′ are modiied, the most obvious being

that each modiied cache line from S
′ must be written back to mem-

ory (analogous to the problem described for rearranging from S

to S
′ and handled in a similar fashion). A mechanism must exist

in order to map the values within S
′ to those in S . Without this,

the near-memory rearrangement device has no mechanism to scat-

ter (reverse the gather operation). An alternative to providing a

solution in hardware, would be to have the programmer manually

manage the write back from S
′ to S using the compute core, how-

ever, this would largely defeat the purpose of the SPDRE which is

to reduce data movement (especially data movement into the main

processor core). Any SPDRE built near memory that is intended to

provide both read and write capabilities to S ′, must be able scatter

S
′ to S in order to be eicient. The operation to synchronize from S

to S ′ after the initial rearrangement is also possible, however, in the

authors opinion it is not practical (e.g., an instance were multiple

windows of a single data segment S ′ changing the segment S could

potentially require updating many windows S ′ which could be in

use or active in multiple thread contexts in multiple compute ele-

ments). In the general case, ordering could also not be guaranteed

which would make conlict resolution of multiple S ′
i
windows near

memory physically impossible in some cases (i.e., limitations of

clock synchronization and stable global clock reference would make

temporal determination impossible). To avoid solving intractable

problems, the SPDRE considered within this text deines a synchro-

nization function which has the capability to make the changes

from S
′ synchronize (write-back) to the non-contiguous segment S

with hardware acceleration near memory, but not in the opposite

direction (S → S
′). The synchronization is programmer driven via

a sync function call and is page-granularity atomic with respect

to near-memory write-back ordering. Any higher-level ordering
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Figure 2: Abstract depiction of Sparse Data Reduction Engine (SPDRE) hardware layout (as simulated). The programmer facing

API for the SPDRE enables the user to allocate memory for S ′ which initializes the SPDRE accessible 4K region laid out in

memory immediately ahead (lower numerical address) of the returned user pointer to S
′. To initiate a rearrangement from S

to a contiguous range S ′, the programmer provided function is copied to the space labeled łforward functionž, the user API

signals a rearrange command (label łAž) via memory mapped IO, the modiied lines from S are written back to memory (label

łBž), the pages of S are marked as read only by the API (label łCž), then the rearrange command is released to the work queue.

At the head of the work queue (label łDž) the SPDRE program counter is loaded with the start address of the forward function

and the translation registers are set with the base address of S and S ′ to translate the contiguous physical pages. On completion,

or as pages of S ′ are ready, loads from the core are allowed to proceed.When the programmerwants to synchronize (write-back)

modiications of S ′ to S , the modiied cache lines are written back to memory, then the synchronization operation proceeds at

the SPDRE vs. in-core.

is expected to be provided via more drastic mechanisms such as a

programmer placed mutex.

3 SPECIFYING REARRANGEMENT

Speciication of patterns via bit-mask, which are practical for simple

shule operations, no longer scale to larger memory regions (the bit

mask would quickly grow linearly to the size data to be rearranged).

A near-memory rearrangement API should focus on operators that

can scale to larger memory regions. Another often promised feature,
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Figure 3: Transparent mapping of S to S ′ is impossible as the

knowledge of m must be maintained and conveyed to both

the rearrangement engine and the processor core.

but falsely so, is that of fully transparent rearrangement in mem-

ory. Figure 3 shows a segment S being gathered to S ′ via mapping

functionm. In order to do useful computation, the CPU core must

have knowledge of that mapping function. The transfer from the

rearrangement device must either be in a format recognized by the

hardware and decoded by it, or included by the programmer. With-

out that, the information in S
′ is essentially encrypted via the key

m. It should be clear that all but simple ofsets must be done with

some intervention to transmit the state ofm along with S
′. Prior

works like IMPULSE [5] attempt to interject this mapping function

m into the physical address space using a pseudo-physical address

space, however, this creates multiple additional dependencies such

as synchronizing the remapping table that keepsm and re-running

them for each access to memory in the remapped space. One form

of intervention that could result in more transparent rearrange-

ment, that is left to future work, is through application proiling

and insertion of code which would actuate a rearrangement and

compute, efectively handlingm for the programmer. The work in

this paper, in contrast, is based on a library approach.

This section describes a series patterns that support all types

of rearrangement operations. This section describes an API-based

mechanism similar to that proposed by (Lloyd and Gokhale [23]) to

rearrange data in-/near-memory. There are three rearrange function

modalities:

(1) Fixed ofset

(2) Bijective function where given function pointer maps S to

S
′ and S ′ maps to S .

(3) Dual function where one arrangement S to S
′ is given by

one function and S ′ to S is given by another function

within our simulated SPDRE which enables a full spectrum of

rearrangement possibilities (note: the destination contiguous mem-

ory segment must be allocated with a SPDRE speciic allocate which

is deined later in this paper). The fact that these are exposed as a

programmer API should not lead the reader to believe that this is

the only way to implement it. Future work will include looking at

proile and compiler guided rearrangement.

Multiple accessory functions are necessary for the SPDRE to

allocate, free, and synchronize memory. A release functionality is

provided, however, the functionality could be implemented via ref-

erence counting in hardware. The SPDRE speciic allocate initializes

all the needed data segments for persistent information tracking

(see data ields in S
′ from Figure 2).

template < class DST, class SRC >

static std::size_t rearrange(

DST * const dst,

SRC * const src,

const std::size_t nitems,

const std::size_t offset );

Figure 4: Deinition for simple ofset rearrange the non-

contiguous data from the src pointer to a contiguous dst

pointer given the speciied offset and nitems with respect

to the length of source.

template < class DST, class SRC >

static std::size_t rearrange(

DST * const dst,

SRC * const src,

const std::size_t nitems,

rearrange_func_t< DST, SRC > src_dst );

Figure 5: Deinition of function to rearrange the non-

contiguous data in src pointer to the dst pointer given the

output address from the src_dst function and nitems with

respect to the length of src. The src_dst function imple-

ments a bijection so that the SPDRE device can map S ↔ S
′

with a single function.

template < class DST, class SRC >

static std::size_t rearrange(

DST * const dst,

SRC * const src,

const std::size_t nitems,

rearrange_func_adv_t< DST, SRC > forw,

sync_func_adv_t< DST, SRC> back );

Figure 6: Deinition of rearrange function to gather non-

contiguous data from the src pointer to the dst pointer

given the address from the forw function S → S
′ and the back

function for S ′ → S . This splits the bijectivity of Function 5

into two separate functions.

template < typename TYPE >

static void alloc( TYPE **output,

const std::size_t nitems );

Figure 7: Special SPDRE library allocate virtual memory ad-

dress for S ′ memory to pointer given by *output

template < typename TYPE >

static void free( TYPE *ptr );

Figure 8: Deinition of free function for SPDRE allocated

memory region. It is expected that the programmer has

called sync before this op is called otherwise data within S
′

pointed to by ptr will be lost.
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template < class T >

static void release( T * const src,

const std::size_t nitems );

Figure 9: Deinition of function to clear memory protec-

tions of non-contiguous data segment S . More of a conve-

nience function, given this could be implemented as refer-

ence counting, however it is implemented for the tested sim-

ulation so it is included here for completeness.

template < class S, class S_Prime >

static void sync( S * const s,

S_Prime * const s_p,

const std::size_t nitems );

Figure 10: Deinition of sync function which is called by the

programmer to write data from S
′ (s) to S (s_p).

The overall usage of the emulated SPDRE from the programmer

(API-level) is described in lowchart form within Figure 11. Starting

with the allocate call from the user, a memory region is allocated

that is compatible with the SPDRE. It is assumed the data segment

S resides on a set of contiguous pages (for simulation purposes only,

not a limitation of the described method). A rearrange call (one

of the methods listed above) initiates rearrangement into segment

S
′. At the same time as the rearrange call, segment S is write

protected (the exact method is an architectural and OS detail), so

that the only updates will be to S ′. To write data back to S once S ′

has been written to, the programmer must explicitly call the sync

function. This is also true if writes to S
′ are to be relected in S

before calling free. Upon release of all rearranged segments S ′ the

write protection is removed from segment S .

4 WHERE TO COPY

In Section 2 the Impulse memory controller was described as the

closest related work. This paper describes amethod that gets around

some of the limitations of previous memory controller techniques,

while still being memory controller based (in some implementa-

tions).

Many memory controller techniques use a scratchpad within

the memory controller in order to łconstructž a full line from a

rearrangement function (described as a mapping functionm pre-

viously, see Figure 3). On each read of a value x , on LLC miss,

a request is issued to the memory controller which then issue re-

quests to memory based on the mapping function to construct a line.

The requested virtual address is a line from S
′, whereas the data

requested from memory to construct the line is from S . Each read

request of x results in N requests to memory to construct the line

(assuming the line isn’t still bufered in the scratchpad). This adds

signiicant latency, and duplication of execution of the functionm

(in the case when x is an LLC miss multiple times), and additional

copies if the same address is requested. The same process must be

repeated in reverse on a write to S ′, with the values immediately

being exposed to S once the rearrangement functionm is run. This

presents consistency issues if multiple rearrangement windows S ′
i

are desired. With programmer guided approaches, it is assumed

spdre::alloc

User Specified:

rearrange

Data 

Segment S’

User 

Specified 

Data 

Segment S

Write-back modified S 

from cache to memory

Use S’
Need to 

Update S?

Call sync 

yes

no
Done With 

S’?

free

Data 

Segment 

S’

User 

Specified 

Data 

Segment S

release 

yes

no

All S’ windows 

released?

Done

no

yes

 Fill S’ from function

Figure 11: Flow of SPDRE from a programmer (API-level)

perspective starting with allocation of segment S ′. Note: the

free function is not intended to synchronize the data seg-

ment S ′ back to S , some applications need the ability to cre-

ate a window that can be thrown away despite containing

modiied data (with respect to S), therefore S
′ needs to be

synchronized to S then the programmer must explicitly in-

sert the call.

that the programmer isn’t going to rearrange from memory that

she isn’t planning on using. With that in mind, this approach is

sub-optimal for energy, latency, and bandwidth (although more

space eicient). SPDRE takes another approach, improving upon
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Impulse and previous reorganization works. These improvements

and diferences include:

(1) Eagerly reorganizing the data from S to S ′
i
with the thought

of optimizing the transfer and doing as few additional copies

as possible. In efect, main memory (fast memory, e.g., HBM)

becomes the scratchpad for the SPDRE

(2) Placing all state for the mapping functionm and data about

modiied values within S ′, S ′ itself can be moved to any non-

uniform memory access (NUMA) node within the system.

5 REDUCTION METHOD

In order to be used within systems that are shared, memory con-

strained, and with page-based virtual memory systems as they exist

today, PINM technologies, such as the SPDRE, must co-habitat

constructively with existing technologies. One burden for any out

of coherence network processor (including PINM) is that meta-

information available to the main processor for managing dirty

cache lines and pages is not easily available to the PINM device.

This presents an issue for PINM that enable near-memory rear-

rangements of data. Presented within this section is a method that

enables multiple windows of a larger memory segment to be cre-

ated (exact methodology described below) and then synchronized

back to the main memory at a speciied interval. The net efect is

decreased data movement and increased vectorization potential for

many workloads.

5.1 Allocation

The SPDRE device allocates memory through standard mechanisms

(e.g., libc). The data format of the memory returned, from user

space appears exactly as any other array. Laid out in memory

ahead of the user accessible memory region returned from the

spdre::alloc memory region is an SPDRE accessible segment of

memory that is marked non-accessible by the host core (a design

decision to add a level of safety, see layout in Figure 2). The func-

tion m is a bijective function (or two functions), which map the

data S ↔ S
′ so that a SPDRE can stably translate from an index

relative to one set to an index in another, e.g., S ′
i
↔ Sx . This bi-

jective function is stored within the head of the set S ′ which is

within the SPDRE accessible segment upon the irst rearrange call.

At allocation several other data structures are set up, such as a hash

ilter (described later). Other than the special format of the SPDRE-

accessible segment of memory, there is no diference between this

memory and any other memory in the system.

5.2 Rearrangement

Rearrangement itself is relatively straightforward. The irst step is

lushing any dirty lines within the bounds of the source data S that

could be in the cache hierarchy. For the described SPDRE imple-

mentation, once the modiied lines are written back to memory, the

pages of S are marked as read only to ensure they are not modiied

during the gather operation.

Initiation of rearrangement without modifying any of the stan-

dard memory control channels can be accomplished through mem-

ory mapped IO, which forms a control channel with each SPDRE. If

a hardware designer is willing to add additional pathways between

thememory device and themain processor cores thenmore eicient

!
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Thread
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Figure 12: One key feature of the SPDRE is to accelerate cre-

ating windows of memory S
′ from a source segment S with-

out occupying themain core, that are unaliasable to the orig-

inal segment.

methods such as ARM’s AXI bus or other interconnect technology,

then the communications pathway could be much more eicient.

The memory mapped IO forms a FIFO channel, two such channels

make a bidirectional pathway between the SPDRE and the main

processor. The minutia of signaling are not directly germane to this

method, so the high level description and assumption of command

channel existence will suice.

There are a few types of rearrangements that when combined can

make up any needed pattern. The irst is the simple ofset or ilter,

where the rearrangement is a ixed distance (shown in Figure 12 on

the left, solid outline). The second is a programmable rearrangement

where programmable logic controls the ofsets (shown in Figure 12

on the right). The programmable logic (either a single or set of

functions) form a bijection between S
′ and S . On execution of a

rearrange call, the associated mapping functionm is copied to the

SPDRE-accessible data segment. Transmitting the information for

rearrangement was described earlier, however what hasn’t been

described is how to translate virtual addresses to physical ones

within the compute near data device. The exact method is beyond

the scope of this text, however it should be obvious that limiting

the scope of S to contiguous physical pages is one solution.

Upon completion of a rearrangement in memory, a signal is re-

turned to the host processor to indicate that the data is available.

This is the most simple mechanism to describe, however, an imple-

mentation could also transmit data as soon as it is available from

S
′ for the host processor to consume. Having the special SPDRE

segment contain the functional statem for S ′ enables this segment

(perhapsmultiple contiguous pages) to be swapped to disk ormoved

if the need arises. They can be synchronized back without risk of

loosing state assuming the sync function is called using the base

address for S ′ (that which was originally passed to the program).

Once the rearranged window S
′ has been created, it can be

used as any other data segment, now with only the data that the

processor expects. Given that the memory of S ′ is a new physical

address and a new virtual address, it is completely unaliasable from

its parent segment S . Aside from requiring more physical space

than some previous techniques, it also introduces some additional

design decisions for synchronization. The easiest one to visualize is

when multiple threads contain unique subsets of S , e.g., S ′0, S
′

...

, S ′
N
.

The data contained within each S
′

x must at some point be written
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back to the main data set S (e.g., for synchronization events, for

updates to subsequent operations, etc.). Within the SPDRE, this

synchronization is page atomic and user driven via API to the

hardware accelerator. As previously mentioned, synchronization is

only allowed in one direction S ′ → S . This prevents the need for an

all to all mapping table as would be required by some prior works.

One innovation over earlier data rearrangement methods is the

ability to maintain the state of modiied ranges (relative to the

main window of memory) independent of the behavior of the main

processor. As discussed previously, the SPDRE device sits outside

the coherence network and is intended to be movable cross-socket,

used by multiple threads and windows (see Figure 12), as well as

being paged-in/-out at will by the operating system. This creates

an issue when the goal is to minimize data movement, ideally clean

values from S
′ will not be written back to S superluously. The

SPDRE needed a mechanism to determine which segments within

S
′ are modiied and which are not. To solve this in a space eicient

manner, the SPDRE turns to probabilistic ilters such as the Bloom

Filter [3].

The Bloom Filter [3] is a probabilistic data structure which en-

ables querying with the guarantee of zero false negatives. When

storing information about which segments are modiied within a

speciic region, this behavior ensures that all modiied information

is in fact synchronized to main memory when needed, with the

expense that some clean information might be written as well. In

order to index the hash ilter, ofsets from the base address of S ′ are

used (i.e., i → N ). This scheme transferable (stateful) when paging

S
′ to other SPDRE devices within the system so the operating sys-

tem requires no further modiication to make the SPDRE function

in a NUMA system. Granularity of the hash ilter itself can also

be variable. The current approach enables the size of allocation to

determine at what granularity the dirty region information should

be (i.e., should a region be considered a single cache line, a whole

page, or something else). The granularity itself is stored as a simple

ofset, again contiguous with the rearranged window. The ofset it-

self is ixed for a given window allocation, but it can vary with each

allocation. This solution is preferable over others such as bit-sets

given that it doesn’t grow linearly with the size of the rearranged

segment S ′.

This paper is about the overall concept not direct implementation,

however, a generic implementation would place the SPDRE device

at an HBMmemory controller (as in Figure 2) so that the SPDRE, or

multiple SPDRE accelerators, can interleave across channels to take

advantage of maximum memory parallelism. As will be described

in Section 6, the simulated SPDRE will only use a single HBM

channel emulated using DDR4. Within the current implementation

(simulated setup), the SPDRE-accessible data segment has space

for 128-bytes of instructions for two mapping functionsm which

leaves room for 32 instructions assuming a 4-byte encoding if using

both a forward and reverse mapping function and 64 instructions

if using a bijective forward/reverse function.

6 SIMULATION ENVIRONMENT

The simulation environment used for SPDRE benchmarking is based

on the low of the API in Figure 11. The simulator (setup shown

in Figure 13) consists of a separate thread pinned to an isolated

Initiate Re-

arrangement

Program Thread Emulated DRE

Pin Thread to 

Unused Core
Start-up

Execution

Move Pages To 

DRE NUMA Node 

(or handle cache 

maint. to flush)

Rearrange 

S->S’

Move pages (S and 

S’) to Execution 

Thread NUMA Node 

(or flush exec thread 

cache of addresses)

Receive Re-

arrangement

Figure 13: Depiction of the actions for threaded SPDRE emu-

lator upon rearrange call from application thread. First the

application thread calls rearrange, the addresses needed are

computed, a memory fence is used to ensure all writes are

present in the original segment S , then actions are taken

to ensure that the core used for the SPDRE emulator does

not prefetch for the application core. Once the rearrange-

ment is complete, the pages of rearranged memory are ei-

ther returned to the application core’s NUMA node or they

are lushed from the cache (to ensure the SPDRE emulator

does not act as a prefetch thread).

core, which receives rearrange function calls from the application

threads, just as a physical SPDRE would.

The motivation of emulating the SPDRE using a pinned thread

on an isolated core is to explore the design space far faster than

would be possible with a cycle accurate (and full system) simula-

tion, while allowing exploration of system issues within a simpler

environment. A secondary motivation, is that on real hardware,

the caching behavior can be observed exactly as it would be on a

real system with a real SPDRE provided the behavior is managed

correctly. The emulator enables capturing:

(1) performance counter statistics for hardware platforms (this

allows comparison of on-chip gather instructions compared

to near-memory data reorganization)

(2) overall execution time for a set of applications to explore a

range of latencies, queueing delay for access to the SPDRE,

and latency of IO to send commands to the SPDRE itself
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(3) cache behavior statistics for the application cores to model

the behavior of rearranged memory on the target architec-

ture’s cache hierarchy compared to standard (unmodiied)

benchmark applications

There are several implementation diferences between the simu-

lator code compiled for the target architecture. In order to remove

the potential for cache behavior that might not relect behavior of

a non-coherent rearrangement engine. These center around the

methodology to prevent accidentally warming the cache of the

non-SPDRE compute elements, as well as the overhead of ensuring

all writes are present before rearrangement. For all platforms a

store barrier must be issued to ensure that all stores are present in-

memory before issuing the rearrangement instruction. For caching

stats, this issue is ignored as it would not not inluence the miss

counts or rates. For timing data collection, a ixed latency can be

added. The rearrangement itself is platform speciic. Intel archi-

tectures with NUMA, use a separate NUMA node for the memory

rearrangement prevents the application threads from aliasing phys-

ical addresses in the cache from the compute element on which the

SPDRE thread is pinned to. A lush is not required on the SPDRE

simulation core either, as a NUMA page move is performed (chang-

ing the physical address), which makes the rearranged data loaded

in the SPDRE simulator core impossible to alias. For non-NUMA

(current ARM) architectures an explicit cache lush is necessary

(and approximately accounted for in execution time via proiling)

to prevent the SPDRE core from acting as a pre-push core to the

non-SPDRE cores. A cache lush is performed on both the host core

and the SPDRE simulator core after rearrangement.

One drawback of using this type of software emulation is the

overhead of the function calls themselves. The function calls within

Section 3 have a non-zero efect on the caches. In total, the simu-

lation adds hundreds of instructions and has a non-zero dynamic

impact on the cache traic. The instruction counts will be higher

for the application under test (even though rearrangements are

performed in a separate thread). There is also the potential for an

increase in the number conlict misses and increased cache pollu-

tion through use of the SPDRE. This should be kept in mind that the

simulated SPDRE results are likely worse than they would be within

an architectural simulator. The main advantage of this simulator

is that it enables exploration of a larger area of the design space

while giving a rough estimate of performance gains from using an

near-memory SPDRE-like device.

Caching statistics will be given versus overall speed-up given

the lack of description of the clocking mechanisms and trade-ofs

between an actual hardware implementation and the emulator on

real hardware. Caching statistics are, however, indicative of poten-

tial speed-up. The logic being, fewer L2 look-ups from L1-D misses

and increased vectorization potential from now contiguous data.

This speed-up also assumes the rearrangement engine can keep up

with the required bandwidth of the core (simulator provisioned as

such) and code that utilizes the SPDRE API early enough and large

enough to amortize the overhead of oload. All cache stats were cap-

tured using the PAPI [25] instrumentation toolkit. All benchmarks

were run using Linux version 3.13. Where platforms had frequency

scaling capability, it was disabled or ixed to maximum frequency.

The compute core used is an Intel based with two E5-2690v3 CPUs

for(auto index( 0 );

index < source_length; index += offset )

{

source[ index ] = workload( source[ index] );

}

Figure 14: Most basic ixed ofset gather with a simple work-

load which is shown in Figure 16.

and 64GB of DDR4 memory. With two DDR4 channels at ∼ 25GB/s ,

they emulate a single HBM2 channel roughly in bandwidth char-

acteristics, but not in latency. Latency in the simulator is handled

via a global timing mechanism, however, the statistics given for

this paper are primarily targeted towards demonstrating the efec-

tiveness at increasing cache bandwidth so this mechanism will be

described more thoroughly in future work. The SPDRE emulator

itself is linked as a static library to the appropriately-ported bench-

marks. The C++ library is compiled with the following compilation

lags:

-std=c++14 -O2 -mtune=native

Several libraries are needed in addition to those already men-

tioned for various functions including: libnuma, librt, and the

pthreads library. These are linked at benchmark application com-

pile time.

7 APPLICATIONS AND RESULTS

This work looks speciically at how to rearrange code that was dif-

icult to vectorize using in-register data rearrangement techniques.

OpenMP [6] versions of both applications are used exclusively.

These are early results which look at the impact on cache behavior

which is a critical measure of how much data movement is reduced

in the system and indirectly indicative of how well an application

can vectorize.

7.1 Fixed Gather

The most basic gather task is to gather data at a ixed ofset is shown

in code form as Figure 14, where the data needed for the workload

is in the source array and the workload workload is called on it.

With the SPDRE, this code can be rewritten as shown in Figure 15.

The SPDRE version is more verbose due to the API, however, the

cache performance more than makes up for the added complexity

and is far simpler than inserting complicated gather code manually.

The PAPI framework is used to capture caching statistics before and

after the given code from examples in Figures 14 and 15. This means

that the overhead of the SPDRE function calls is included within the

SPDRE numbers in Figure 17. Looking at the non-SPDRE data set,

the behavior observed for the given strides is exactly as expected.

Looking at a stride of four elements (size of 8-bytes, std::int64_t

), the expected result should have at least 268M cache accesses

to the L1-D in order to stride across a 1GB data set. Assuming a

64-byte cache line, the expected result should demonstrate ( 644 ) hits

for every line on average, which means there should be a maximum

of 67M cache misses. What empirical evaluation demonstrates,

however, is that there are quite a few more misses for the lower

strides. Further experimentation on the test platform conirms that
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spdre::alloc( dst, source_length );

const auto num_rearranged(

spdre::rearrange( *dst, src,

source_length, offset )

);

for( auto dst_index( 0 ); dst_index < ret_val;

dst_index++ )

{

(*dst)[ dst_index ] =

workload( (*dst)[dst_index] );

}

spdre::sync( *dst, src, N_SRC );

spdre::free( *dst );

spdre::release( src, N_SRC );

Figure 15: Simple ofset in-memory rearrangement using

the SPDRE to gather in memory

#define workload( x )\

std::exp( static_cast< double>( x ) / 2 )\

* 7.0f / 3;

Figure 16: Simple workloadmacro provided for random and

strided microbenchmarks.

many of the resultant misses are likely the result of prefetch. The L2

and L3 data are roughly close to what is expected given a next line

prefetch of 4 lines (please note that details of prefetch algorithm

are assumed from the mathematical ratios, the actual degree of

prefetch implemented on the target platform is unknown and likely

proprietary to implementation).

The data shown in Figure17 demonstrate a considerable advan-

tage for near-memory rearrangement. The non-SPDRE version of

the loop has far more cache misses for the exact same workload,

subsequent analysis reveals that most are caused by an overly ag-

gressive prefetch (∼ 95% of misses). The prefetcher on the other

hand beneits the SPDRE (next line prefetch is optimal given a

contiguous data space). The SPDRE version has roughly the exact

number of cache misses that are expected given contiguous access

pattern. The SPDRE version also includes misses created by the

API itself (allocate/rearrange /synchronize/free) which hand-

icaps it compared to the native code. The only technology that

could improve this scheme further would be through directed mem-

ory placement/cache stashing which is beyond the scope of this

investigation. The next microbenchmark examines random gather

versus ixed stride. A Gaussian distribution is used to determine

which indices are gathered into the contiguous data segment S ′.

The authors have designed the SPDRE to utilize small simple of the

shelf cores, the inclusion of a random number generator is quite

reasonable. The exact same selection function is used for the SPDRE

and non-SPDRE versions.

7.2 Random Gather

As an application to gauge feasibility, random gather naivelymimics

sparse data access patterns. This microbenchmark implementation

simply gathers values and performs some mathematical operations

Figure 17: Average cachemisses for ixed stride microbench-

mark across a 1GB data set.

template < class DST, class SRC >

static

DST*

gather_function( SRC * const ptr,

const std::size_t index )

{

static std::random_device rd;

static std::default_random_engine eng( rd() );

static std::normal_distribution< double > dist;

static auto gen( std::bind( dist, eng ) );

if( gen() >= 0 )

{

return( &ptr[ index ] );

}

else

{

return( nullptr );

}

}

Figure 18: Gather function for random gather. It is assumed

that the processor serving as the computation core can ac-

cess a uniform random source that would enable it to ei-

ciently use Gaussian transforms such as the Box-Muller [26]

method. The selected pointer from S is returned as a pointer

so that it may be copied to S
′.

on them (see code from Figure 16). This is useful not for the com-

plexity of the benchmark, but for an exploration of cache behavior

throughout a wide range of data set sizes and randomly chosen

gathers. As with the strided gather, the random gather uses a 1GB

data set. The data given are averaged across 100 independent exe-

cutions. The gather function and run code for the SPDRE enabled

code is given in Figures 18 and 19 respectively.

PAPI instrumentation was used before and after both run func-

tions (SPDRE and non-SPDRE) to gather caching statistics. The

results (shown in Figure 21) are quite similar to the ixed stride,

with the SPDRE coming out quite a bit ahead despite the overhead of

the emulation environment (allocate, free, synchronize calls).

Variation between runs was approximately 1% (single threaded

workload).
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static std::size_t

run( DST **dst,

SRC * const src,

const std::size_t N_SRC,

rearrange_func_t< DST, SRC > function )

{

/** allocate DRE memory **/

spdre::alloc( dst, N_SRC );

const auto ret_val( spdre::rearrange( *dst,

src,

N_SRC,

function ) );

/** do something **/

for( auto dst_index( 0 ); dst_index < ret_val;

dst_index++ )

{

(*dst)[ dst_index ] =

workload( (*dst)[dst_index] );

}

/** synchronize **/

spdre::sync( *dst, src, N_SRC );

spdre::free( *dst );

spdre::release( src, N_SRC );

return( ret_val );

}

Figure 19: This code example uses the rearrange function

from Figure 18 to gather data into the array *dst so that the

workload loop can stride contiguously across it. Upon exe-

cution, the sync function returns the data to the original in-

dices in src (S).

7.3 LULESH

LULESH [19] is an MPI+OpenMP code which uses unstructured

access patterns on structured data to represent data motion needed

for staggered grid hydrodynamics applications. This indirect access

pattern is representative of production codes. This is exactly the

type of access pattern that the near-memory SPDRE is designed

to tackle. Our modiications keep the unstructured access patterns

intact, but perform gathers near-memory vs. in-core. The hybrid

version of the code spawns OpenMP threads to work within indi-

vidual MPI [13] processes on the same loops as in the pure OpenMP

version of the code. OpenMP is mainly used around the loops over

elements and nodes, but is also used for reductions. This application

contains loops that are ideal for overlapping gather near-memory

with high throughput vector instructions. Typically this would have

to be hand coded for each architecture, however, those equipped

with an SPDRE device could gather near memory then use compiler

issued vector instructions given the easily recognizable contiguous

nature of the data. The code examples use only the OpenMP version,

modiied to use only a single thread.

The porting of LULESH was done in two ways. The irst port

is to illustrate a point that the rearrangement distance must be of

suicient granularity and far enough ahead of the computation that

needs the data to take advantage of it. This is not a diicult task to

accomplish by any means, however, care must be taken (as with

static std::size_t

run( DST ** dst,

SRC * const src,

const std::size_t N_SRC,

rearrange_func_t< DST, SRC > function )

{

auto count( 0 );

for( auto index( 0 ); index < N_SRC; index += 1 )

{

/** use same function to give indices **/

auto *ptr = function( src, index );

if( ptr != nullptr )

{

/** access normally within core **/

*ptr = workload( *ptr );

count++;

}

}

return( count );

}

Figure 20: Non-SPDRE loop of code to perform the same op-

eration using the workload macro from Figure 16 as the SP-

DRE version in Figure 19. It uses the exact same gather func-

tion as well to ensure the same number of gather instruc-

tions are executed for both the SPDRE and the control

Figure 21: Randomized gather using No SPDRE and SPDRE

to compare caching behaviorwith a control (No SPDRE). The

SPDRE version incurs an order of magnitude fewer L1-D

cache misses compared to the control (107 for SPDRE versus

108 for the control).

any advanced feature) not to reduce performance with these code

modiications. The below code example is designed to show what

not to do with a SPDRE, and the performance degradation that

could result if rearrangement points are chosen poorly. Figure 22

shows such an example for the CalcFBHourglassForceForElems

function from the benchmark ile lulesh.cc.

PAPI was used to gather statistics before and after this loop,

which is gathering from the Domain class the correct elements in a

contiguous window. The issue with this loop is that the addition of
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Real_t *xd1, *yd1, *zd1;

spdre::alloc( &xd1, 8 );

spdre::alloc( &yd1, 8 );

spdre::alloc( &zd1, 8 );

rearrange_func_t< Real_t, Domain > yd(

[]( Domain * const ptr,

const std::size_t index ) -> Real_t*

{

return( &(*ptr).yd( index ) );

}

);

/** equivalent rearrange functions for xd, yd, xd **/

spdre::rearrange( xd1, &domain, 8, xd );

spdre::rearrange( yd1, &domain, 8, yd );

spdre::rearrange( zd1, &domain, 8, zd );

coefficient =

(- hourg) * Real_t(0.01) * ss1 * mass1 / volume13;

CalcElemFBHourglassForce(xd1,yd1,zd1,

hourgam,

coefficient, hgfx, hgfy, hgfz);

spdre::free( xd1 );

spdre::free( yd1 );

spdre::free( zd1 );

Figure 22: Example of a poor port of LULESH to using the

SPDRE. The gather is too small to amortize reorganization

cost.

more instructions with the allocate, rearrange,and free func-

tion calls outweigh the beneit of more contiguous data (empirical

observations in Figure 23). It should be noted that a true hardware

implementation of the SPDRE would have a much lower overhead

compared to the software emulator and subsequently this loop

would not be quite as bad, however, is still a good example of what

not to do with an near-memory SPDRE.

A second example, which shows the positive beneits for LULESH,

places the near-memory gather at a point where it can gather as

much data as possible as early as possible. Given the data access

patterns from the LULESH Domain data structure, a more extensive

porting of LULESH to utilize near-memory gather would result in

even greater performance. Such extensive modiications are out-

side the scope of this investigation. A data rearrangement for the

CalcFBHourglassForceForElems function over a wider range is

shown in the code example in Figure 24. The data (from the code

example in Figure 24) are gathered into the array pointed to by d1

right after the assignment of gamma. The elements themselves are

used by assigning within the loop over each element as in the code

example from Figure 25.

The pointers xd1, yd1, and zd1 now point to contiguous seg-

ments of memory that were gathered via the SPDRE before iterating

over each element. Two versions were tried, one where prefetch

is inserted for each of these pointers within the loop and another

without the prefetch. The prefetch is quite efective for arranged

Figure 23: Cache statistics gathered using PAPI for the

LULESH application given the poor gather choices made

from the code example in Figure 22. The results of PAPI

instrumentation of miss counts at the L1-D, L2, and L3 are

quite clear (note: LULESH is executed with -s 20 -i 20 and

in single threaded mode), the overhead of calling allocate

and free multiple times is quite high (likely worse due to

the simulation method, but the trend would likely be ex-

actly the same for a hardware implementation). This is an

example of how the overhead of sparse data reduction near

memory can outweigh the beneits when using a software

driven programmable approach (ISA mechanisms may not

be so limited). A better port, showing sizable improvement

(amortizing the cost) is shown next.

data as it is cache line contiguous, and can be inserted by the SP-

DRE library aware compiler far enough ahead to actually be of use.

For testing these versions, the iteration counts for LULESH were

increased to i=300 and the problem size was increased to s=100.

Figure 26 shows the irst version (no prefetch) which is a dras-

tic improvement over the version whose cache miss statistics are

shown in Figure 23. Figure 27 shows that adding a prefetch in-

struction, as each element is iterated over (right after the previous

code example from Figure 25 showing assignment of xd1, yd1, and

zd1), to fetch the contiguously arranged data makes the SPDRE ver-

sion more performant than the non-SPDRE version. The prefetch

equivalently placed for the non-SPDRE version actually reduced

performance.

The results for LULESH are quite promising for the execution of

applications like LULESH on vector architectures. Increasing the

L1-D utilization is critical to maintaining high vector throughput

due to bandwidth limitations [20]. Technologies like the SPDRE

could enable many applications to align data into units that are

immediately loadable to vector lanes while at the same time com-

pacting data within the cache hierarchy so more data can it. A

beneit of providing a user-space interface for compacting data

near-memory is enabling the compiler to do more vectorization for

the programmer versus by hand. In the LULESH example above,

providing a restricted pointer for the contiguous segments would

likely enable the compiler to emit more optimal streams vector
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Real_t *d1( nullptr );

/** allocate memory for DRE **/

spdre::alloc( &d1, 24 * numElem );

rearrange_func_adv_t< Real_t, Domain >

gather( []( Real_t **dst,

Domain **src,

const std::size_t index,

void *data ) -> bool

{

const auto * const numElements(

reinterpret_cast< Index_t* >( data )

);

for( Index_t i2( 0 ); i2 < *numElements; i2++ )

{

int x( 0 + ( i2 * 24 ) ),

y( 8 + ( i2 * 24 ) ),

z( 16 + ( i2 * 24 ) );

const auto *elemToNode(

(*src)->nodelist( i2 )

);

for( auto i( 0 ); i < 8; i++ )

{

(*dst)[ x++ ] =

(*src)->xd( elemToNode[ i ] );

(*dst)[ y++ ] =

(*src)->yd( elemToNode[ i ] );

(*dst)[ z++ ] =

(*src)->zd( elemToNode[ i ] );

}

}

return( false );

} );

using sync_t = sync_func_adv_t< Real_t, Domain >;

spdre::rearrange( d1,

&domain,

24 * numElem,

gather,

(sync_t)nullptr,

(void*)&numElem );

Figure 24: Better port of the LULESH application compared

to the smaller near-memory gather from Figure 22. This ver-

sion gathers all 24 elements for all numElem at once then op-

erates on them

Real_t * const xd1( &d1[ 0 + (i2 * 24) ] ),

* const yd1( &d1[ 8 + (i2 * 24) ] ),

* const zd1( &d1[ 16 + (i2 * 24) ] );

Figure 25: Assign variables contiguous portions of the gath-

ered array from Figure 24 so that they may be passed to the

rest of the code unmodiied.

Figure 26: An improved port of LULESH using the code from

Figure 24 for LULESH (no prefetch), but increasing the num-

ber of elements processed to -s=100 and the number of it-

erations -i=300, the SPDRE version pulls ahead of the non-

SPDRE equipped example, showing half the number of L1-D

misses.

Figure 27: An improved port of LULESH using the code from

Figure 24 for LULESH (with prefetch), with the number of

elements processed to -s=100 and the number of iterations

-i=300, the SPDRE version with prefetch results in an or-

der of magnitude fewer L1-D misses compared to the non-

SPDRE equipped LULESH.

instructions. Future work will include the coordination with vec-

torization explicitly as well as more machine instruction driven

approaches to reduce software overhead.

8 CONCLUSIONS

With the ubiquity of sparse applications and their importance to

many very important problems, it is clear that architectures must

become more eicient at running them. To make data movement

more eicient, however, computer architectures have moved to

bulk transfer wherever possible. The unfortunate consequence is

that more superluous data is moved for sparse and irregular work-

loads. Bulk transfer is needed as an engineering solution to make
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movement more efective, so the obvious solution is to take a gather-

scatter approach as close to memory as possible so that when bulk

transfer is used, it is transferring only the needed data.

This work presented a hardware accelerated gather-scatter near-

memory targeted at reducing overall data movement within the

system. It difers from prior works by giving a solution that is

implementable in operating systems with paging, with multicore

chips, across sockets, and even with multiple NUMA nodes. The key

technology, the Sparse Data Reduction Engine (SPDRE), is to this

authors knowledge one of the irst such engines to accomplish all

of these points. In addition to the primary contribution, this paper

includes a programmer interface that enables all combinations of

rearrangement, analysis of the methodology on a small series of

applications, and inally a discussion of future work.

Early results were shown that demonstrate where methods like

SPDRE could be efective and in the case of LULESH where the SP-

DRE could fail (when used incorrectly). The results clearly indicate

that compacting data near-memory is beneicial for cache usage

and could pay dividends for increased vectorization.
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