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Abstract—Modern hardware is often heterogeneous. With het-
erogeneity comes multiple abstraction layers that hide underlying
complex systems. This complexity makes quantitative perfor-
mance modeling a difficult task. Designers of high-performance
streaming applications for heterogeneous systems must contend
with unpredictable and often non-generalizable models to predict
performance of a particular application and hardware mapping.
This paper outlines a computationally simple approach that can
be used to model the overall throughput and buffering needs of
a streaming application on heterogeneous hardware. The model
presented is based upon a hybrid maximum flow and decomposed
discrete queueing model. The utility of the model is assessed using
a set of real and synthetic benchmarks with model predictions
compared to measured application performance.

I. INTRODUCTION

In search of ever higher performance, computer archi-

tectures have diversified to include a wide variety of het-

erogeneous hardware such as multicore processors, field-

programmable gate arrays (FPGAs), and graphics processing

units (GPUs). Presented with multiple architectural platforms

on which to run an application and potentially hundreds

of compute kernels within a single application, developers

need reliable and computationally feasible models to pre-

dict performance for automated analysis. One performance

metric of interest to many “big-data” applications is overall

throughput [2]. This paper empirically explores an analytic

model that is computationally simple, widely applicable to

streaming applications and can be integrated into an automated

optimization system. The model is validated across multi-

ple heterogeneous systems (e.g., computational components,

communication components, etc.), a pair of real streaming

applications (JPEG encode and DES encrypt) and multiple

synthetic streaming applications.

Stream processing is a computing paradigm that views an

application as a set of pipelined compute kernels connected

by streams of data. Each kernel performs application specific

operations on the data stream before sending it out along an

explicit communications link. Streaming applications (com-

posed of a series of kernels deployed on some architecture) can

be modeled as a series of queues and servers. Each compute

kernel is modeled as a server which draws data from a queue.

Each edge is also a server, modeling the delivery of data from

one kernel to the next. The service rate associated with each

server is a function of both the execution hardware onto which

the kernel (or edge) is deployed (i.e., mapped) and the degree

to which that execution hardware is shared.

We combine a generalized flow model with a Jacksonian

queueing network to model both throughput and buffer be-

havior for streaming applications on heterogeneous hardware

(see [1] for details of the model development). The model

first computes the sustainable throughput at each data-flow

edge. The model then uses the calculated throughput at each

edge to determine the necessary buffering capacity required

to sustain that throughput. The technique is computationally

efficient, with a polynomial time solution [3]. The method is

similar to that of Pourbabai et al. [5]; however, we extend their

work to support data compression and expansion, add a sharing

model for execution resources that have more than one kernel

(or edge) mapped to them, and demonstrate empirically that

models such as these are effective for streaming applications

on real heterogeneous hardware.

II. EMPIRICAL RESULTS AND DISCUSSION

In order to validate the hybrid modeling approach, a series

of synthetic applications were generated which varied both

edge configuration and routing probabilities along the data-

flow network. JPEG encode and DES encrypt applications

were used to validate this modeling strategy on two real appli-

cations that are representative of many streaming applications.

All application kernels were deployed on multicore architec-

tures with a subset of the kernels deployed in FPGAs. The

choice of where to allocate a particular kernel was made using

a uniform random process. The resource sharing models used

within the flow model are validated separately [1]. The testing

methodology utilizes empirical measurements of throughput

from each compute kernel along with measurements of the

application as a whole, using the TimeTrial performance

monitor [4].

TABLE I: Hardware used for empirical measurement.

Name Machine 1 Machine 2

proc. 12 x 2.4GHz AMD Opteron 4 x 3.1GHz Intel Xeon E3
FPGA 2 x Virtex-4 LX100 None
RAM 32GB DDR2 8GB DDR3

Forty synthetic applications with 3 through 82 compute

kernels were tested on Machine 1 (see Table I). The JPEG

encode and DES encrypt application throughput results (from

Machines 1 and 2 in Table I) are plotted along with the

throughput results from the synthetically generated applica-

tions in Figure 1. Note that the performance predictions are
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Fig. 1: Percent error for gain/loss flow model for the syn-

thetic application set, the JPEG encode application and

the DES encrypt application. Percent error calculated as
(modeled flow−observed flow)

observed flow
× 100. Histogram bin size is 1%.

Kernels were executed on FPGA and multicore processors.

very good for a model this simple. All flow predictions are

within 10% of empirical measurements.

We have particular interest in the circumstances where the

model does not perform well. Firstly, if any of the assumptions

listed in [1] are violated, the model’s performance predictions

cannot be trusted. Second, as the number of compute ker-

nels mapped to a single core increases, the error inherent

in the simple processor sharing model grows as well. In

our experiments we observed a strong correlation between

increasing percent error and number of kernels per core. Future

work will investigate this relationship and perhaps explore the

effectiveness of more complex sharing models.

The results for the synthetic, JPEG encode, and DES encrypt

applications for an upper bound on queueing capacity are

shown in Figure 2. The figure provides empirical evidence

that the model is conservative for estimating buffering capac-

ity requirements. The modeling assumption is exponentially

distributed arrival rates and service rates, while real service

distributions are typically closer to deterministic (i.e., have a

much lower coefficient of variation than does an exponential

distribution), even if not fully deterministic. It is this distinc-

tion that yields conservative estimates for buffer requirements.

Note, however, that while conservative, the buffering estimates

can be excessive, due to the non-linearity of the queue occu-

pancy relative to server utilization.

III. CONCLUSIONS

With reconfigurable hardware, multicore chips, graphics

processors and other resources to choose from; application

designers have a very difficult set of choices when selecting

the best hardware for an application. The analytic model

reported here aims to provide an easy to use method for

application developers to find the throughput for an application

on a particular set of hardware resources while placing a

conservative upper bound on necessary queueing capacity. It
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Fig. 2: Percent error for modeled maximum queue occupancy

at each buffer vs. measured occupancy. Percent error cal-

culated as
(modeled occupancy−observed occupancy)

observed occupancy
× 100. Histogram

bin size is 1000%. For all applications the model gives a

conservative bound on necessary queueing capacity.

can be used as part of an automated optimization strategy and

is potentially scalable to any finite number of kernels.

The model was tested using several synthetically generated

applications, a JPEG encode application and a DES encrypt

application. The empirical measurements show how the model

performs under several conditions and how it can be used

to solve for throughputs that are typically within 10% of

reality and frequently much closer. This is quite impressive

considering the simple nature of the underlying sharing model

that is used. A unique feature of the model is that it can be used

across hardware and software platforms. Future work includes

testing the boundaries of where these models fail, adding

further side constraints to the model so that tighter buffering

bounds can be calculated, and exploring the applicability of

this model to automated optimization strategies.
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