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Abstract—Current state of the art systems contain various
types of multicore processors, General Purpose Graphics Process-
ing Units (GPGPUs) and occasionally Digital Signal Processors
(DSPs) or Field-Programmable Gate Arrays (FPGAs). With het-
erogeneity comes multiple abstraction layers that hide underlying
complexity. While necessary to ease programmability of these
systems, this hidden complexity makes quantitative performance
modeling a difficult task. This paper outlines a computationally
simple approach to modeling the overall throughput and buffer-
ing needs of a streaming application deployed on heterogeneous
hardware.
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I. INTRODUCTION

In search of ever higher performance, computer architec-
tures have diversified to include a wide variety of hetero-
geneous hardware such as traditional multicore processors,
GPGPUs, DSPs and FPGAs. Presented with multiple execu-
tion platforms, developers need reliable and computationally
tractable models to predict performance. This paper explores
an analytic model that is computationally simple and widely
applicable to applications that are within the streaming data
paradigm. Validation is performed across heterogeneous hard-
ware resources, a pair of real and multiple synthetic streaming
applications. When a model will fail is as important as when
a model will succeed. To this end we seek to determine when
this set of simple models can and cannot be trusted.

Stream processing is a computing paradigm that views
applications as sets of pipelined kernels connected by streams
of data. Streaming applications can be thought of as a series
of queues and servers. Each compute kernel is a server which
draws data from a queue. Many earlier works, including
Schweitzer [11], describe how maximum throughput can be
determined analytically for a finite-capacity open queueing
network. These works have shown that queueing networks can
be used for modeling throughput, however they assume that
queue (buffer) capacity is known.

Queueing networks have a close relationship with flow
networks. Work by Pourbabai [10] utilizes a maximum flow
model to solve a queueing network with side constraints.
Unlike the application studied in [10], computer programs have
data-flow routing constraints that are critical to application
correctness. Without additional constraints, a typical maximum
flow problem formulation assumes that any path from source
to sink can be taken; data-flow constraints are ignored. The
flow model used here places data-flow constraints on the graph
which are directly derived from the modeled application.
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Fig. 1. Initial application graph GA with two compute kernels V1 and V2,
a data source s, and a data sink t.

Many applications exhibit some form of filtering, that is
they either increase or decrease the volume of data as they
process it. This phenomena is more formally termed gain or
loss, respectively. Filtering presents a problem for standard
maximum flow algorithms. This was solved by Jewell [8] and
later with a polynomial solution by Goldfarb et al. [5]. Using
the theoretical work of Jewell, the flow model presented here is
a generalized flow network with a fixed branching probability.

II. THE MODEL

A. Description

Given the throughput capacity into and out of each compute
kernel within an application and the throughput achievable by
each communications link, the model presented here calculates
maximum flow of data through the overall network. Using
a constrained generalized maximum flow network the model
determines maximum flow through an application topology
given a set of constraints. Utilizing a simple M/M/1 queueing
model, it attempts to estimate the minimum required buffering
capacity for each communication edge within the application.

An application graph topology GA (Figure 1) is a con-
nected directed graph consisting of each compute kernel within
an application as a vertex Vi and every data-flow dependency

as an edge
−−→
ViVj . An application topology also defines a

(pseudo-) data source s and sink t. Since application topologies
can have more than one actual data source and sink, the model
inserts s with out-edges to all application kernels that have zero
in-edges and t with in-edges from all application kernels with
zero out-edges. Nodes s and t are modeled as having infinite
capacity.

Every communications link is a distinct resource with its
own service rate. This necessitates transforming GA by adding
additional vertices for each communications link which can be
directly modeled as a queueing network GQ (Figure 2). Every
application kernel and communications link is a queue and
server pair in GQ. Formally GQ is defined by the 4-tuple:

GQ = (VQ, EQ, s ∈ VQ, t ∈ VQ)

where s is the source node and t is the termination (sink) node.
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Fig. 2. The queueing network GQ that arises from addition of a communi-
cations vertex, V3, modeling the edge from V1 to V2 in GA.
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Fig. 3. The overall flow graph GF with capacities C at each edge.

In a queueing network, two main parameters characterize
the performance of the network: λ(Vi) (the arrival rate of data
at node Vi) and µ(Vi) (the service rate at node Vi). Nodes
in VQ that represent compute kernels have their service rates
determined by measurement in isolation and are assumed to
have non-blocking read and write behavior. At equilibrium,
with no gain or loss, µ(Vi) is equal to the aggregate data
ingest rate (with units of Bytes/s). The service rates of nodes
in VQ that represent communication links are determined from
first principles (i.e., from performance specifications provided).
The arrival rates λ(Vi) will be derived from the flow model
described below.

A flow graph is defined as a directed acyclic graph GF

(Figure 3) where each server in the queueing network (Figure
2) is represented as a vertex. Since GQ is a case of an open
Jacksonian network, GF is constructed from GQ by removing

the queues on each edge
−−→
ViVj ∈ EQ. Formally the flow graph

is defined as a 7-tuple:

GF = (VF , EF , s, t, C, γ,R)

VF = VQ, EF = EQ,

where C : EF → ℜ+ represents the flow capacity of each edge
(determined as described below), and γ : VF → ℜ+ represents
the data volume gain or loss at each node. It is defined as the
ratio of the mean data volume out of a node relative to the
mean data volume in. A γ < 1 represents data loss (e.g.,
data compression) and a γ > 1 represents data gain (e.g.,
data expansion). For nodes representing compute kernels, these
values are determined empirically, and for nodes representing
communication links, γ = 1. R : EF → (0, 1) represents the

routing fraction associated with each out-edge
−−→
ViVj of node

Vi.

Given µ(Vi), γ(Vi), and R(
−−→
ViVj) for each vertex and edge,

the capacity C associated with each edge can be computed
using Equation (1).

C(
−−→
ViVj) = µ(Vi)× γ(Vi)×R(

−−→
ViVj). (1)

Each edge in a flow graph is constrained by C(
−−→
ViVj). Note

that the implicit assumption has been made that each compute

kernel is mapped to a dedicated compute resource. Extensions
for resource sharing are in the section below.

To calculate the maximum stable throughput the model
maximizes Γ (the overall application throughput) and f (flow
at every graph edge) subject to:

∑

j(i,j)∈EF

f(
−−→
ViVj)−

∑

j(j,i)∈EF

f(
−−→
VjVi) =

⎧

⎨

⎩

+ i = s

0 i = circulation

− i = t
(2)

f(
−−→
ViVj) ≤ C(

−−→
ViVj) (3)

f(
−−→
ViVj)

∑N
x=1 f(

−−→
ViVx)

= R(
−−→
ViVj). (4)

Equation (2) states that flow must be conserved across all edges
and that the only edges with positive or negative flow are
adjacent to s and t respectively. Flow must be less than or
equal to the capacity as shown in Equation (3). Equation (4)
ensures that the data-routing is maintained across each edge.

To bound queue size, the model can be further constrained
by φ, ensuring a smaller server utilization (ρ = λ/µ) at each
queueing station. This corresponds to maximizing Γ with the
following constraint:

ρ(Vi) ≤ φ. (5)

The value assigned to φ can be any value < 1. Once

maximal values of f(
−−→
ViVj) have been calculated for every

−−→
ViVj ∈ EF , these values can be used within the queueing
model to determine the necessary buffering for the system at
the calculated flow. To do this the relationship must be shown

between f(
−−→
ViVj) and the queueing model parameters λ(Vi).

For queueing stations with multiple in-edges, these queues are
treated as sub-queues of one larger queue. The relationship
between maximized flows along each edge and λ is therefore

λ(Vj) =
∑

i

f(
−−→
ViVj). (6)

Our hypothesis is that the M/M/1 model gives an upper
estimate of the queue occupancy, we expect the actual service
time distributions to have a lower coefficient of variation than
an exponential distribution. To estimate buffering capacity, we
solve for queue occupancy K at a probability PK that is close
to zero as in Equation (7).

K(Vi) =
log( PK

1−ρ(Vi)
)

log(ρ(Vi))
− 1. (7)

The parameter K is very sensitive at low and high values of ρ
and is also influenced by PK (Figure 4). Values of PK should
be chosen based on overall throughput of the system, for our
experiments we set PK = 10−7.

B. Sharing Models

In order to account for resource sharing, Equation (1) is
modified to substitute µs for µ, reflecting the shared capacity.
The sharing model for multicore processors is a fair sharing
model:

µs(Vi) = µ(Vi)/np, np = # processes. (8)
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Fig. 4. This figure shows the change of slope for values of 10−9 ≤ PK ≤

10−1, demonstrating the relative stability of K for values of PK with .1 ≤

ρ < .7. Once ρ ≥ .7 a value of 0 < PK ≤ 10−3 gives a much tighter bound
on K. Also seen is the convergence of the slope towards +∞.

FPGAs are assumed to be shareable in area, but not temporally.
The sharing equation reflects that by giving each compute
kernel mapped to an FPGA its full µ until all available gates
are exhausted:

µs(Vi) = µ(Vi)× ai (9)

where ai = 1 if
∑N

i=1 Areai ≤ Available Area , else ai = 0.

A PCI-X bus is used for multicore to FPGA communica-
tion. The PCI-X sharing model is also a fair sharing policy,
but only until the bandwidth limit is reached:

µs(Vi) = µ(Vi)/nc (10)

where nc is equal to the number of communication links
sharing the bus.

C. Modeling Assumptions

The model presented above makes the following assump-
tions about the applications, graph topology and underlying
hardware. (1) The application is assumed to be in equilibrium:
the streaming computation paradigm is typically used in ap-
plication domains that require high-throughput, high volume
computation. On initial startup and termination non-steady
state behavior is exhibited, however during the majority of the
execution steady state behavior is typical. (2) The data volume
into and out of each edge is measurable on the compute kernel
in isolation (i.e., separated from the rest of the application
topology). (3) Only non-blocking behavior exists, i.e. servers
are allowed to process data as soon as it is present on its queue.
(4) Data routing is independent of the state of the system, i.e.
external signals don’t influence removal of items from a queue,

nor R(
−−→
ViVj). (5) All compute kernels are work conserving:

when two compute kernels are mapped to the same resource,
the work that is done by the compute kernel does not decrease.
If two compute nodes are combined in such a way that overall
work is less for the combined kernel than the two separate
nodes then this is non-work conserving.

III. MODEL EVALUATION APPROACH

In order to evaluate the model, two paths are taken. First
a pair of real applications are used and second, a set of
synthetic applications of varying topologies are generated. For

each application, both real and synthetic, random mappings of
application kernels to compute resources are generated and
run on the hardware enumerated in Table I. Unless noted,
the multi-level queue scheduler is used. The paragraphs below
describe the tools, hardware, and methods used for evaluation.

TABLE I. HARDWARE USED FOR EMPIRICAL MEASUREMENT

Name Machine 1 Machine 2

CPU 12 x 2.4GHz AMD Opteron 4 x 3.1GHz Intel Xeon E3

FPGA 2 x Virtex-4 LX100 None

RAM 32GB DDR2 8GB DDR3

The Auto-Pipe [4] development environment is used for
all experiments. The TimeTrial [9] performance monitor pro-
vides accurate measurements of queue occupancies and edge
throughput. All applications and compute kernels (both real
and synthetic) are expressed in combinations of C and VHDL
and compiled with the GNU C compiler or synthesized with
Synopsys Synplify Premier DP respectively. The GraphMod-
eler [6] tool generates synthetic kernels, maps compute kernels,
and executes the model.

The model uses measurements of each compute kernel
running on its assigned hardware as input. To accomplish this,
each compute kernel is instantiated in isolation using a test
bench produced by GraphModeler that provides input to each
in-edge and consumes all data on each out-edge. Throughput is
measured using the TimeTrial monitoring system and recorded.

For a given application, each compute kernel can be run
on many potential resources. GraphModeler uses a uniform
random process to select hardware resources from the set in
Table I, producing a set Ω of chosen resources. Once Ω is
selected, the set of application compute kernels (VA) must
be mapped to it. To map VA to Ω, kernels χ ∈ VA (drawn
uniformly from VA) are selected and assigned to resources
ω ∈ Ω (again, drawn uniformly from Ω), ∀ω ∈ Ω. The
mapping algorithm then assigns remaining kernels χ ∈ VA

to ω ∈ Ω by randomly walking the in- and out-edges of
previously mapped compute kernels until all compute kernels
are mapped.

Whenever the verification of a model is based principally
on empirical evidence, a primary consideration is the extent to
which the test sets used are truly representative of the overall
universe of possibilities. That concern is addressed through the
use of several synthetic benchmarks generated by GraphMod-
eler using topologies from [2] with parameters as specified
in [1]. In addition, two real applications (JPEG encode and
DES encrypt) are used for model evaluation. The JPEG encode
application is implemented according to the specifications in
[7]. The DES encrypt application is implemented according to
the FIPS (46-3) standard [3]. The topology of each application
is specified in the X language [4] which serves as input for
GraphModeler.

IV. EMPIRICAL RESULTS

A test application designed to run multiple processes on
a single core is used to validate the processor sharing model.
Each process is synchronized to start concurrently and runs
for 2 minutes. Each time quantum is consumed by looping
for 200 no-op instructions. Tests were run on both machines
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Multi�level Queue Batch Round Robin

Fig. 5. Percent error for processor sharing model using three schedul-
ing algorithms. All metrics are over 1 through 40 processes on one pro-
cessor core. Model predicts executions per second. Error is calculated as
(modeled rate−observed rate)

observed rate
. R2 values for each scheduler are .999854, .999952,

and .766693 for multi-level queue, batch, and round robin respectively.
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Fig. 6. Plot of modeled versus observed flow for all three application sets.
Kernels were executed on FPGA and multicore processors.

listed in Table I. Three different scheduling algorithms (multi-
level queue, batch and round robin) were chosen as they are
representative of most modern systems.

In Figure 5 the processor sharing model validation percent
error distribution is shown for predicted executions per second.
The overall model vs. observed fit is quite good for the batch
and multi-level queue scheduler. As we might expect, the round
robin scheduler resulted in more variation than the other two
scheduling algorithms due to fixed quantum sizing.

The flow model is validated with the set of applications
described in Section III. Forty synthetic applications with 3
through 82 compute nodes were tested on Machines 1 and 2
(see Table I). Linear regression of the modeled versus observed
flow rates across each for the combined synthetic, JPEG
encode and DES encrypt gives an r2 = 0.999; Figure 6 shows
this relationship, and a histogram of relative error is shown in
Figure 7.

As important as where the flow model succeeds is where
it could fail. Given the percent error shown in Figure 7, it is

Synthetic Applications JPEG Encode DES Encrypt

Fig. 7. Percent error for flow model for all three application sets, calculated

as
(modeled flow−observed flow)

observed flow
× 100. Histogram bin size is 1%.

assumed that the model is generally correct for the applications
tested. To find some instances where the model might fail, the
variation in percent error is examined. We hypothesize that
some of the variation could be explained by compounding error
as sharing increases for a given compute resource. Observing
the correlation coefficient between the number of compute
kernels assigned to each resource and the percent error could
give an indication that this explanation is at least plausible.
While the overall predictive quality of the flow model is
high, the hypothesis that its imperfections are dominated by
the sharing model isn’t supported by the evidence given a
relatively weak correlation of 0.317 for the combined set of
synthetic and JPEG encode applications.

The M/M/1 queueing model assumes exponentially dis-
tributed arrival rates and service rates, while real service
distributions are often closer to deterministic (i.e., have a much
lower coefficient of variation than an exponential), even if
not fully deterministic. This distinction is the basis for our
hypothesis that the M/M/1 model will produce conservative
estimates for the actual queue occupancy. Figure 8, which plots
percent error of modeled maximum queue occupancy, implies
that the model is excessive when predicting queue occupancies
across the board.

Figure 4 suggests that solving for queue occupancy when
ρ < .9 should produce a more stable result owing to the
sensitivity of K to ρ. To better understand where the queueing
model fails, a separate tandem queue micro-benchmark was
constructed (see Figure 9). The micro-benchmark was run on
multicore processors with a multi-level queue scheduler.

Figure 10 compares the observed queue occupancy for the
micro-benchmark to modeled predictions.We conclude that not
only does the model not match the empirical results, the errors
are negative (i.e., the measured max queue occupancy exceeds
the model predictions). While the results for low ρ shown
in Figure 10 have negative errors, the even larger positive
errors present in Figure 8 are for values of ρ near 1. As a
percentage, these values are large because they are normalized
to the smaller, measured quantity. When the errors are negative,
they are often significantly negative, with the percent error
bounded at −100% simply by the normalization. The take-
home message is that the M/M/1 queueing model is simply
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Fig. 8. Percent error for modeled maximum queue occupancy
at each buffer vs. measured occupancy. Percent error calculated as
(modeled occupancy−observed occupancy)

observed occupancy
× 100. Histogram bin size is 1000%.
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Fig. 9. Tandem queue micro-benchmark used to explore properties of M/M/1
queueing model in a more controlled setting than full applications. Two
queues, labeled “Q1” and “Q2” are instrumented for profiling while varying
the ρ of servers “A”, “B” and “C.”

inadequate to reasonably explain the queueing requirements of
these applications, and an alternative model is needed.

V. CONCLUSIONS

With multicore chips, FPGAs, GPGPUs and other re-
sources to choose from, application designers have a very
difficult set of choices when selecting the best execution
platform for a given application. A metric that is of particular
interest to “big-data” applications is throughput. The analytic
model presented in this paper aims to provide an easy to use
method for application developers to find the throughput for
an application on a particular set of hardware resources while
placing a relatively conservative upper bound on queueing
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Fig. 10. Measured maximum queue occupancy for the tandem queue micro-
benchmark at varying levels levels of ρ. Equation (7), which predicts queue
occupancy as a function of ρ, is plotted as a continuous line.

capacity necessary. It does a good job of the former, but a
poor job of the latter.

The empirical measurements show how the model performs
under several conditions and how it can be used to solve
for throughputs that are typically within 10% of reality and
frequently much closer. In addition to showing where the
model performs well, we’ve shown that for estimating buffer-
ing capacity an M/M/1 queueing model is often significantly
incorrect. A micro-benchmark was constructed to analyze
this behavior which points out even further the inability of
the model to be effective for maximum queue occupancy
estimation purposes.

Overall the results are quite reasonable for a set of models
that are explicitly trying to stay simple. The flow model is
positioned well to be quite useful. Future work includes further
testing the boundaries of where these models succeed and
where they fail, exploring alternative models for determining
buffering bounds, and exploring the applicability of the models
to automated mapping strategies.
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