Use of a Levy Distribution for Modeling Best Case
Execution Time Variation

Jonathan C. Beard
Roger D. Chamberlain

Jonathan C. Beard and Roger D. Chamberlain. “Use of a Levy Distribution
for Modeling Best Case Execution Time Variation,” in Computer
Performance Engineering, Lecture Notes in Computer Science, Vol. 8721,
September 2014, pp. 74-88.

Dept. of Computer Science and Engineering
Washington University in St. Louis

Use of a Levy Distribution for Modeling
Best Case Execution Time Variation

Jonathan C. Beard and Roger D. Chamberlain*

Dept. of Computer Science and Engineering
Washington University in St. Louis, St. Louis, Missouri, USA
{jbeard,roger}@wustl.edu

Abstract. Minor variations in execution time can lead to out-sized ef-
fects on the behavior of an application as a whole. There are many sources
of such variation within modern multi-core computer systems. For an
otherwise deterministic application, we would expect the execution time
variation to be non-existent (effectively zero). Unfortunately, this expec-
tation is in error. For instance, variance in the realized execution time
tends to increase as the number of processes per compute core increases.
Recognizing that characterizing the exact variation or the maximal vari-
ation might be a futile task, we take a different approach, focusing in-
stead on the best case variation. We propose a modified (truncated) Levy
distribution to characterize this variation. Using empirical sampling we
also derive a model to parametrize this distribution that doesn’t require
expensive distribution fitting, relying only on known parameters of the
system. The distributional assumptions and parametrization model are
evaluated on multi-core systems with the common Linux completely fair
scheduler.

1 Introduction and Background

Understanding the performance of software systems is often accomplished with
the help of stochastic queueing models. These models typically require knowledge
of the distributions for inputs such as arrival rate and service rate for compute
kernels within an application. Directly influencing the aforementioned values is
the execution time distribution of each compute kernel. Complete knowledge of
the distribution is generally futile for modern systems. Yet understanding it,
however incompletely, is critical to selecting proper model formulations. When
understanding complex phenomena, it is often the practice to find a useful bound.
We contend that the minimal expected execution time variation of a system, or
best case execution time variation (BCETV), is such a bound. By forecasting
BCETYV for a particular software and hardware combination, we hope to improve
the a priori knowledge of a models’ applicability. This paper introduces the use of
a modified Levy distribution for characterizing the BCETV of short execution,

* This work was supported by Exegy, Inc. Washington Univ. and R. Chamberlain
receive income based on the license of technology by the university to Exegy, Inc.

A. Horvéth and K. Wolter (Eds.): EPEW 2014, LNCS 8721, pp. 74-88, 2014.
© Springer International Publishing Switzerland 2014

Use of a Levy Distribution for Modeling BCETV 75

compute bound kernels. A closed form expression for the probability density
function as well as it’s first and second moments are derived. The distributional
assumptions and model are evaluated via empirical evaluation.

Several references simply assume that the distribution of a series of execution
times should be Gaussian [7]. Other works (e.g., [10]) have shown some examples
of successive execution times that are not Gaussian with any high probability.
Other phenomena such as worst case execution time have been modeled with
the Gumbel distribution [5]. Empirically measured execution time noise for a
minimal workload of “no-op” instructions (the difference between the nominal
and measured execution times, plotted in Figure 1) exhibits a heavily skewed
distribution. Simply assuming a Gaussian distribution (green line) overestimates
the mass of one tail while underestimating the other. A Gumbel distribution
(blue line) is arguably even worse. Some might posit that a Gamma distribution
is a good fit, however the support exists only for > 0 which fits neither reality
or our use case as a noise model. A modified Levy distribution (red line, exact
modifications to be discussed) is plotted against the same data, visually it is the
best fit to the observed data.

20 ¢
15+ [
=
S 10-
| x‘?\
0E - I I -
-04 -0.2 0.0 0.2 04
X (us)

Fig. 1. Histogram of the discrete PDF for a simple “no-op” workload execution time
absolute error (light blue bars) in us plotted against the PDFs of a fitted Gaussian
distribution (green line), a Gumbel distribution (blue line) and a modified Levy distri-
bution (red line). Visually it is easy to see that the modified Levy distribution is the
best fit for this data set.

Many performance models require details of the inner workings of the target
processor [6]. When empirical evaluation is performed, often the results obtained
are still uncertain. How well did the empirical evaluation sample the distribution
of execution times? Even when detailed knowledge is assumed, or empirical eval-
uation is performed, there is still uncertainty in the values obtained. Causes of
this execution time uncertainty can include cache behavior, interrupts, schedul-
ing uncertainty as well as countless other factors. Distributional uncertainty can
lead to poor stochastic model performance. Instead of focusing on the worst or

76 J.C. Beard and R.D. Chamberlain

even average case, our approach focuses on the best case and what this bound
can do for the model decision making process. As an example, Figure 2(a) shows
the distribution that a simple M/M/k queueing model assumes for its inter-
arrival distribution whereas Figure 2(b) might be closer to reality given a noisy
system. One application of BCETV is to estimate how close a models’ input
assumptions will line up with reality assuming a best case variance. This could
allow quick rejection of models whose assumptions are violated.

- 04f

041 B
i 031
03 n
.- 02} B

02°F B B
01°f = 0.1} |
0.0 M S—— YL m —

0 2 4 6 8 10 12 0 2 4 6 8§ 10 12 14

(a) Exponential distribution (A =.5) (b) Exponential distribution (A = .5) with
additive Gaussian noise

Fig. 2. Stochastic models often make simplifying distributional assumptions about the
modeled system. One common assumption is that of a Poisson arrival process (i.e.,
exponentially distributed inter-arrival times). This assumption is often violated by
the “noise” that the hardware, operating system and environment impose upon the
application. Figure 2(a) shows a nominal exponential distribution, while Figure 2(b)
shows an example of a realized distribution.

BCETYV is the minimum variation (error relative to the mean) which can
be expected from any single observation of execution time. We assert that the
minimal “no-op” workload can be used as a proxy for determining BCETV for
short execution, compute bound kernels. In principle, these workloads should be
quite deterministic in execution time, but clearly are not. We will show that the
distribution of BCETYV experienced by these workloads represents a reasonable
lower bound “noise” model for nominal execution time. Utilizing empirical data,
the modified Levy distribution is revised in terms of system parameters (i.e.,
processes per core, nominal execution time). Evidence is provided that the mod-
ified Levy distribution is a good match for BCETV, especially as the number of
processes per core grows.

2 Methodology

The motivation to use a Levy distribution to model the best case execution time
variation (BCETV) came from empirical observation. Ultimately we must jus-
tify that decision by comparing model predictions to experimental observations.

Use of a Levy Distribution for Modeling BCETV 7

To that end we start by describing the process through which these data are
collected. This is followed by the description of the modified Levy distribution
that we propose to use, and how to parametrize it.

2.1 Synthetic Workload

Our focus is the uncertainty in execution time of a running process due to factors
other than the process itself. As such, we use an intentionally simple nominal
workload so that the observed variation is due not to the application itself,
but to other system related factors (e.g., operating system, hardware, etc.). Our
nominal workload is the execution of a fixed number of null operations or “no-op”
instructions. Aside from no instructions at all, we assume that a null operation
is the least taxing instruction. It follows from this logic that a series of null
operations should present the most consistent execution time out of any real
executable instruction sequence.

One aspect under study is how changing the nominal workload time changes
the observed variation in actual execution times. In order to produce a workload
of “no-op” instructions that is calibrated to a specific nominal execution time we
use sequences of instructions of various lengths which are timed and then used
as input for regression to produce an equation for the number of instructions to
use for each nominal execution time. Calibration timing is performed while the
timed process is assigned to a single core and executing with no other processes.

In theory any duration of workload could be created using this method, how-
ever in practice the file sizes become prohibitively large proportionate with the
frequency of the processor and the desired running time (e.g., platorm A from
Table 2 requires approximately 10 million“no-op” instructions for each second of
execution time). Other approaches that reduce the file size could be used such as
looping over a calibrated number of “no-op” instructions, however we’ve chosen
to use the simpler aforementioned approach because it reduces the possibility
of variation due to other factors, such as branching. Our method also assumes
that cache pre-fetching will eliminate virtually all instruction cache misses which
should then have no appreciable effect on the actual run time. One concern with
huge numbers of instructions is that translation lookaside buffer (TLB) misses
might increase the observed variation. With TLB misses we would expect an
increase in the overall observed variation with longer duration executions with a
random pattern (dependent on other processes operating on the same core, TLB
algorithm, etc.). As we will show below, this is not the case; more variation is
observed for short execution times.

2.2 Hardware, Software, and Data Collection

At the core of our efforts is empirical data collection. The distributional choice
and subsequent verification depend upon it. To enable empirical data collection,
a test harness was created that executes the synthetic “no-op” workloads while
varying numbers of processes per core, nominal execution times, and execution
platforms. As the synthetic workload processes are executing, the parameters in

78 J.C. Beard and R.D. Chamberlain

Table 1 are collected. In order to reduce the possibility that results gleaned from
this study might be an artifact of a particular hardware platform or operating
system, two different platforms are used as shown in Table 2 (two of platform A
and seven of platform B). All platforms support a version of the Linux completely
fair scheduler [9] which will be exclusively used during data collection.

Table 1. Experimental Parameters

Parameter Symbol
Nominal Execution Time tn
Processes per Core P
Voluntary Context Swaps v
Non-Voluntary Context Swaps nv
Actual Execution Time ta

Execution Time Noise (4 —tny) A

Table 2. Hardware and Operating Systems

Label Processor Operating System
A Intel E3 1220 Fedora 19, Linux Kernel v. 3.10.10
B 2 x AMD Opteron 2431 CentOS 5.9, Linux Kernel v. 3.0.27

Each data point collected consists of the dimensions outlined in Table 1.
Nominal execution times vary from 0.25us through 3.7ms with observations at
an interval of 0.25us throughout the range. The number of workload processes
per core varies from 1 through 20 processes. Each sharing and nominal execution
time pair is executed 1000 times to ensure a good distribution sample. The
synthetic workloads are run on one of two of platform A or on one of seven
of platform B from Table 2. In total 100+ million observations are made. Two
factors limited the range of viable execution times: the lower bound on timer
resolution (see below) and the memory needed to generate workloads of longer
lengths (disk to store and physical memory to compile).

Generated data is divided into two sets. The first, a “training” set (of size 10°)
is segregated using uniform random sampling. The rest of the data is used for
model evaluation and will be referred to as the “evaluation” set. We specifically
want to judge the applicability of this noise model to multiple hardware types
and operating systems using the same scheduler.

There has been much discussion about the best and most accurate way to
time a section of code [3]. There are many methods including processor cycle
counters and operating system “wall-clock” time. Given our reliance on empirical
data for modeling and evaluation we feel it is important to cover how our timing
measurements are made. In many cases, the use of a simple time stamp counter
is effective assuming that the process will never migrate to another core. Another
issue to consider is frequency scaling which can lead to wildly inaccurate timings

Use of a Levy Distribution for Modeling BCETV 79

when utilizing the processor cycle counter. To alleviate some of those concerns
and provide a relatively universal timing interface we developed a system timer
thread that utilizes the x86 time stamp counter instruction on a single reference
core to update a user space timer. When a process or thread requests the current
time, an in-lined function copies the current time struct which has two time
references and it compares the two times. If they are the same then the calling
code can be sure that the time has been fully updated and the function returns,
if not the code loops until the values match. Frequency scaling is turned off for
the time update thread.

This timing method has several advantages: (1) it is entirely in user space, (2)
it is lock-free, and (3) it is monotonic even when the timed thread is shifted to
a new core. Two concerns with this approach stem from the copying operation.
How long does it take to copy the timer struct on a target system and what
happens when there are multiple Non-uniform Memory Access (NUMA) nodes?
To test the latter of these concerns a benchmark was constructed to ascertain
how long a copy operation takes when the copy is from the same NUMA node
as the calling process and when the timer thread and requester thread are on
differing NUMA nodes. The results of this are shown in Figure 3 for platform B
from Table 2. What we’ve found is that reading memory allocated on a NUMA
node other than the one closest to the time requesting process the access times
can vary somewhat. To eliminate this issue, all subsequent experiments only use
a single NUMA node.

A common problem with highly accurate timing via software is determin-
ing what is ground truth. Short of an external atomic clock, there are only
varying degrees of truth. In order to determine the precision and accuracy of
our measurements, a standardized workload is created with a series of “no-op”
instructions of varying lengths. Each “no-op” length is timed using either the

0.6
0.5¢
04t
03¢
02F
0.1F

0.0 k& ‘ : ‘ ‘ ;
0 10 20 30 40 50

Avg. ns per copy

Pr(obs)

Fig. 3. Smooth histogram of 10° data points each representing timed averages of 500
copy operations, first on the same NUMA node (red line) and then across different
NUMA nodes (blue line). The performance of a copy on the same NUMA node seems
to be much more consistent.

80 J.C. Beard and R.D. Chamberlain

x86 rdtsc instruction or the POSIX.1-2001 clock gettime () function. Figure 4
shows the inter-quartile range (25" to 75" percentiles) difference of each tim-
ing measurement as a function of the length of the “no-op” instruction sequence,
This plot informs us about the stability of the two timing methods. The system
call to clock gettime() is more stable than the rdtsc instruction, especially
for these small workloads. A hypothesis as to why it is more stable is that the
measurement of actual workload time is small relative to the time it takes to
perform a system call. To test this theory the timing methods themselves are
timed by executing five hundred of each method (either the rdtsc insn. or the
clock gettime() function) and using the average execution time of all five hun-
dred to extrapolate the time to execute a single instruction. In this experiment
the rdtsc instruction is used as the reference timer on platform A from Ta-
ble 2. As expected (and shown in Figure 5) the system call to clock gettime()
takes almost 3% as long on average compared to the x86 rdtsc instruction. For
this reason, we exclusively use the rdtsc instruction for all empirical timing
measurements in this work.

£ 150t
)
3
P 100 -
5
=}
o
5 sof
S
0 C I n n T L
0 100000 200000 300000 400000 500000
no—op Count
— clock_gettime() rdtsc

Fig. 4. Interquartile range difference (IQRD = 75 — 25%") in nanoseconds for the
times measured for each set of “no-op” instructions (number instructions listed on x-
axis). Each instruction length was executed 10°x for each method. The IQR gives a
visual representation to the stability of measurements for these two timing methods.

2.3 Distribution

Figure 1 provides a qualitative indication that a Levy distribution makes a good
choice for modeling the noise present in execution times of a nominally fixed min-
imal workload (the proxy for BCETV). Quantitatively Table 3 summarizes the
p-values for each distribution (higher is better), the table shows the minimum,
maximum and mean values. The Levy distribution is the only distribution with

Use of a Levy Distribution for Modeling BCETV 81

g 250! T

> o

E 200"

s

& 150}

2

S 100}

o8 ——

T e

= _—T
clock_gettime() rdtsc

Fig. 5. Box and whisker plot showing a speed comparison of the rdtsc x86 assembly
instruction compared to a clock gettime () call to the Linux real-time clock. The rdtsc
instruction’s 25" — 75" percentiles are almost identical at the nanosecond scale. The
clock gettime() function overall takes much more time (approximately 3x).

Table 3. Summary of Anderson-Darling Goodness of Fit Test

Distribution Min 10" 50" 90" Max Mean
Gaussian Distribution 0 1.17 x 107!° 1.68 x 10™* 3.0 x 10™° .719 .002
Levy Distribution 0 2.11 x 107** 2.15 x 107 .038 .803 .025
Gumbel Distribution 0 8.93 x 1071 1.97 x 107'* 6.39 x 107% .357 .002
Cauchy Distribution 0 3.89 x 1076 1.34 x 1074 .002 771 .009

greater than 10% of the data having a p-value > .01. Next, we will quantitatively
describe the modified Levy distribution that we use.

Realized execution time is the sum of a nominal (mean) execution time and a
noise term. If the nominal execution time is represented by a random variable IV,
and the noise is represented by a random variable V', then the realized execution
time R ~ N + V. The goal of this work is to find a distribution to represent a
lower bound for V' which we term BCETV.

The Levy distribution [11] has a closed form probability density function
(PDF, shown in Equation (1)), however in general it has no defined moments.
Observations from the empirical data lead to a solution. Whereas the tail of the
Levy distribution is infinite, the noise present within the real execution times has
a limit. The limit, not surprisingly, is correlated with both the nominal length of
execution and the number of processes assigned to a single compute core. This
leads to the consideration of a variation of the Levy distribution that is truncated
at a point represented by a new parameter 2. The modified Levy distribution
is defined using the truncation method of Equation (2) as Equation (3) where
F(-) is the CDF of the PDF denoted by f(-). (Note: erfc(z) is the compliment of
the Error Function, 1 — erf(z), and E; is the exponential integral function [1].)
In order to make the equations more concise, w = 2(04579) and z = z(méa).

82 J.C. Beard and R.D. Chamberlain

o= (22)3/2
flwa.n =) W
. B fr(z;a,B)
fmi(z;0,8,9) = FL(Q;a,ﬁL) — F(—o05 0, 8) (2)
me(x;aaﬁaQ) \/Be_z (3)

B V2r(z — a)3/2 (erfey/—w)

Restricting the use of the modified Levy distribution, mL, to x < Q and x > «
leads to a closed form expression of the mean as shown in Equation (4). Lastly,
a variance is also defined as Equation (5).

tmela, B, Q) = 2\@25;02{;wi) e N

J?nL [Of, ﬁv Q}

Eg(—w) \/271'[33/2erfc vV —w +3(Q—a)3/2 4e" —3E 5 (—w)
(a79)2 (2 ((\39704 (2 >> +4(Oéfﬂ)82w

2 Berfc? (v/—w)
(5)

Our next task is to determine an appropriate parametrization of the modified
Levy distribution. We accomplish this task by fitting a model to empirical mea-
surements. The “training” data are sorted into groups W), ;, which are indexed
by the number of processes sharing a core, p, and the nominal execution time, ¢x
(see Equation (6a)). Within each group, the execution time noise is computed
for each observation as in Equation (6b).

Wiy = Uobsi €ptn (6a)
i

A=ty —1tn (Gb)

Separately for each group W, Maximum Likelihood (ML) techniques are used
to find the best parameters for a number of distributions, including the modified
Levy distribution that we are proposing. The quality of the distributions’ fit to
the empirical data is judged via an Anderson-Darling [2] goodness of fit test
as shown in Table 3 (chosen because of the weight given to the tails of the
distributions compared to other tests such as the Kolmogorov-Smirnov test [4]).

Use of a Levy Distribution for Modeling BCETV 83

2.4 Parameterization

While the ML techniques used above can yield a parametrization for the modified
Levy distribution that is well matched to the data, in general ML techniques
are quite computationally expensive and also require substantial support to be
effective. An alternative is to redefine the modified Levy distribution parameters,
a, B, and €, in terms of a subset of the parameters in Table 4.

The selection of parameters from Table 4 is reduced based on the intuition
that the nominal execution time and number of processes sharing a core will have
the largest impact on the true execution time. Given the design of the minimal
compute kernel, it is expected (and confirmed) that there are zero voluntary
context swaps allowing the variable to be discarded. A Pearson correlation co-
efficient between the target variables and the training data (Table 4) quantifies
the intuition about the remaining parameters.

Table 4. Correlation Between Target Predictors

nv tn p
A .508 .771 -.0056

Table 4 summarizes the correlations within the training set between the exe-
cution time noise, A, and the other parameters. For the entire training set there
is a weak correlation between the number of processes sharing a core and the
execution time noise. There is a strong correlation between the nominal execu-
tion time and the noise. Not shown is the co-variance between the non-voluntary
context swaps and the number of processes per core which implies a lack of inde-
pendence. The models considered therefore consist only of the two independent
parameters p and ty.

Using simple linear regression to find coefficients for p and ¢y that best fit
the parameters for «, § and € found by ML, the relationships in Equation (7)
are found with the following assumptions: p € Z A p>landty € R A txy > 0.
To parametrize the modified Levy distribution as defined in Equation 3, several
other constraints must be added, namely: Equation (7a) is expected to have a
negative range for the entire domain, Equation (7b) is positive for the entire
domain and Equation (7c) is greater than « for the entire domain. A limitation
of these equations is the range of data used to create them. It is expected that «
will not continue to decrease as ty — oo and the 3,) parameters probably have
limitations as well; however these equations are supported through the range of
data specified in Section 2.2.

a=4.75 x 107% — 0.220t (7a)
B =419 x 107% + 0.007t (7b)
Q=319 x 1075 + 0.742t 5 (7¢c)

Using Equations (7), which predict «, 8 and Q based on p and ¢y, the PDF and
mean of the modified Levy distribution can now be described in terms of p and

84 J.C. Beard and R.D. Chamberlain

tn as shown in Equations (8) and (9), respectively. The variance of Equation (8)
is a straightforward algebraic manipulation of Equation (5).

0.044p+6.98x10% ¢

8.2 x 1070(\/1p + 1.6 x 107ty)er—46x107tx ~2.1x10%

mp(x:ip,tn) = . 0.003
(—4.8 X 10-9 + 0.22ty + 2)2erfe (1/0.003 — 000)
(8)
_ 0.003
o (1.2 % 1071 + 0.0026)T (—1,0.008 — , S00%,)
mL N| =
’ 0.003 9)
erfe (\/0.003, —p+3_om%5m)
+4.8x107% — 0.22tn
3 Results

How well does the modified Levy distribution approximate the actual BCETV
observed while executing a nominally deterministic compute bound kernel? We
will focus our evaluation on the PDF expressed in terms of processor sharing, p,
and nominal execution time, ¢y, presented above as Equation (8).

The Anderson-Darling (AD) goodness of fit test of Table 3 is, frankly, not
very promising. Yet, we already know from Table 3 that the modified Levy is
the best out of the listed distributions used to model the training data. It is
not at all surprising that our overall p-value when using AD is not very high
ranging from 0 to 0.73. What is welcome news is that AD is not the only metric
available, as it is relatively ineffective at identifying portions of the parameter
space that have a good vs. a poor fit.

A second measure of how well the modified Levy distribution fits empirical
data is how well the moments match. When comparing the mean of the empirical
data sets to that predicted by Equation (9), the differences are effectively below
our ability to differentiate based on the techniques described in Section 2.2 (i.e.,
the difference is < 10712s). Comparing the variance for the modified Levy vs. the
empirical measurements results in an r-squared value of 0.69, which indicates
a reasonable degree of correlation between model and data, but the alignment
between the two is clearly not perfect.

While the above quantitative assessments of the modified Levy distribution’s
match with empirical measurements make it clear that the model is far from
perfect, we must keep in mind the fact that modelers can often exploit indi-
vidual models that are far from perfect, and given prior use of models that are
much more divergent from reality than our proposed modified Levy distribution
there is the real potential for benefit from the ability to use a distribution that
more closely matches empirical measurement than previous models and also has
relatively simple expressions of its first two moments.

We continue the assessment of how well the modified Levy distribution charac-
terizes the noise in execution times by presenting QQ-plots for three distributions

Use of a Levy Distribution for Modeling BCETV 85

relative to the empirical data (see Figure 6). The first column of plots is the
modified Levy distribution of Equation (8), the second column is a Gaussian
distribution, and the third column is a Cauchy distribution. The latter two dis-
tributions are parametrized by fitting to the data using ML techniques. For each
distribution, 4 distinct QQ-plots are shown, separating the processor sharing
variable, p, into quartiles. The first (top) row represents the range 1 < p < 5, the
second row represents the range 6 < p < 10, the third row represents the range
11 < p < 15, and the fourth (bottom) row represents the range 16 < p < 20.

First consider the results in Figure 6(g) and (j), which include the modified
Levy distribution and significant processor sharing. Here, we see quite nice align-
ment between the model and the empirical data, the best evidence yet that the
modified Levy is a good execution time noise model. Next consider the results
in Figure 6(a) and (d), which include the modified Levy distribution and little
processor sharing. In this case, there is reasonably good alignment at the low end
of the range, but the empirical data has slightly less variation than the model
at the high end of the range. Finally, note that the alignment between model
and empirical data is noticeably worse for both the Gaussian and the Cauchy
distributions across the entire range of p.

From the above we conclude that the modified Levy distribution is a relatively
good proxy for BCETV. The distribution of BCETV can in turn be used in many
ways. To demonstrate the utility of BCETV, we explore the mean queue occu-
pancy (MQO) of a single queue system when noise is added as in Figure 2. The
single queue system operates as two threads with one way communication that
is designed to have an exponentially distributed inter-arrival and service time
distribution (i.e., workload is dependent upon an exponential random number
source). A simple model for MQO is the M/M/1 queueing model, it expects
the inter-arrival times to be exponentially distributed. We posit that the farther
from this distribution the actual system is, the greater the model’s predictions
will differ from empirical reality. The Kullback-Leibler (KL) divergence [8] is
a measure of the divergence between two distributions (zero being a perfect
match). We are interested in how far the distributional lower bound as pre-
dicted by the convolution of the exponential distribution and Equation 8 differs
from that expected by the M/M/1 MQO model. With a divergence of zero we
should expect to find a very close match between modeled and experimental
MQO. At higher divergences (the exact amount is an open question) we don’t
expect the M/M/1 model to be very accurate. Figure 7 is a summary of me-

dian KL divergences (y-axis) separated by percent model accuracy (calculated as

|modeledm1\g8%(3r;gleﬁaléed MQO| x 100, x-axis) for 6000+ separate executions

of the single queue system described above on the platforms shown in Table 2. It
shows that lower KL divergence (green bar) between the expected exponential
and that convolved with the BCETYV distribution, is associated with more ac-
curate MQO predictions. This implies that BCETV can be used as a predictor
for model choice (at least with a Markovian arrival process).

86 J.C. Beard and R.D. Chamberlain

(a) Modified Levy (b) Gaussian (¢) Cauchy
~0.000014 g —-0.000014 ¢ ~0.000014 K
-0.0000145 -0.0000145 - .- =0.0000145
-0.000015 = gee® ® -0.000015 - pd 500888(1);2
-0.0000155 -0.0000155 * 7 -0,
e : Z15%102 0 15x10"
-0.000025 —0.00001 -0.00005 0.00005 DX X
l<p<S$
(d) Modified Levy (e) Gaussian (f) Cauchy
-0.0000125 T =0.0000125 £ -0.0000125 .
-0.000013 B -0.000013 ¢ -0.000013 o
00000135 = " -0.0000135 /L -00000135 V 4
~0.000014 - 0 -0.000014 - o =0.000014 £ ot ‘
-0.000025 —0.00001 0 -0.0001 0 0.0001 ~1.x10”% 0 q.x10™
6<p=<10
(g) Modified Levy (h) Gaussian (i) Cauchy
-0.00002 . =0.00002 -0.00002
-0.000025 - =0,000025 -0,000025
-0.00003 . -0.00003 -0.00003
-0.000035 - -0.000035 - =0.000035
-0.00004 -0.00004 -0.00004
-0.000045 —0.000045 -0.000045
-0.00005 . —0.00005 -0.00005
-0.00006 —0.00003 0 -0.0003 0 0.0003 -0.00006 -0.00004
I1<p=<15
(j) Modified Levy (k) Gaussian (1) Cauchy
-0.00001 o -0.00001 -0.00001
-0.000015 . -0.000015 . —=0.000015
-0.00002 -0.00002 -0.00002
~0.000025 -0.000025 -0.000025
~0.00003 —-0.00003 —0.00003 - .
~0.00005 —0.00002 0 -0.00015 0 0.00015 -15x10% 0 15x10"

16<p=<20

Fig. 6. QQ-plots comparing empirical data (vertical axis) to the analytic distributions
(horizontal axis). The dashed line shows the ideal response.

Use of a Levy Distribution for Modeling BCETV 87

KL-Divergence

1.x10'0 ¢ M
1.x10°

1.x10%

':' — 1 % Difference
O\0 00 00 00 00 0o\ 00 00 0\0 0\0

L\Q / Q\/ Q\/b‘Q\/ Q\/@\;\Q\/%Q\/ Qﬁ\ Q\

SEEOE RPN

Fig. 7. The y-axis shows the median KL divergence between the M/M/1’s expected
exponential inter-arrival distribution and the lower bound predicted by convolving the
exponential distribution with Equation 8. The x-axis is the percent difference between
the mean queue occupancy predicted by an M/M/1 model and the actual measure-
ments from a single queue system designed to have a perfectly exponential workload.
The lowest KL divergence (green bar) is associated with more accurate predictions.

4 Conclusions and Future Work

We’ve demonstrated a noise model that appears to work far better than a simple
Gaussian assumption, in fact far better than multiple other distributions. It has
also been shown to work for at least two differing platform types (see Table 2)
using the same fair scheduling algorithm. First, we’ve shown expressions for the
PDF and first two moments of a Levy distribution that has been modified to
have bounded moments. Through empirical data collection, a model is derived
that can be used to parametrize the modified Levy distribution relatively well
without resorting to computationally expensive parameter fitting.

In Figure 6 we showed how well the quantiles of the modified Levy distribu-
tion match to the quantiles of the empirical data. We’ve also noted that the fit
between the model and empirical data gets better as more processes are added
per core. This is in keeping with our original assumption that a single process
on a single core should exhibit its native distribution, in our case purely deter-
ministic, or close to the nominal mean, ¢5. The models demonstrated here are
only validated over the range of empirical data that we’ve collected. For future
work, we would like to extend the parameter estimators for p > 20 and higher
nominal execution times ty.

One concern with our approach is also one of its strengths, that it is based
on wide empirical sampling. Is this noise model really applicable to multiple
hardware types, or were our choices simply judicious? Could other parameters
in addition to nominal execution time, ¢, and the number of processes per core,
p, provide a better estimate on other platforms (e.g., alternative instruction sets).
One potential application of this noise model is as a minimal expected noise for

88

J.C. Beard and R.D. Chamberlain

all workloads. We are also interested in investigating variability in execution time
due to the nature of the application itself, e.g., including the effects of caching,
branching, etc.). We will investigate these options in future work.

References

1]

2]

3]
[4]
[5]

[6]

[7]
8]

[9]

[10]

[11]

Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions: with For-
mulas, Graphs, and Mathematical Tables. Courier Dover Publications (2012)
Anderson, T.W., Darling, D.A.: Asymptotic theory of certain “goodness of fit”
criteria based on stochastic processes. The Annals of Mathematical Statistics,
193-212 (1952)

Bryant, R., O’Hallaron, D.R.: Computer Systems: A Programmer’s Perspective.
Prentice Hall (2003)

Chakravarty, I., Roy, J., Laha, R.: Handbook of Methods of Applied Statistics.
McGraw-Hill (1967)

Edgar, S., Burns, A.: Statistical analysis of WCET for scheduling. In: Proc. of
22nd IEEE Real-Time Systems Symposium, pp. 215-224 (2001)

Engblom, J., Ermedahl, A.: Pipeline timing analysis using a trace-driven simula-
tor. In: Proc. of 6th Int’l Conf. on Real-Time Computing Systems and Applica-
tions, pp. 88-95 (1999)

Jain, R.: The Art of Computer Systems Performance Analysis. John Wiley & Sons
(1991)

Kullback, S., Leibler, R.A.: On information and sufficiency. The Annals of Math-
ematical Statistics, 79-86 (1951)

Li, T., Baumberger, D., Hahn, S.: Efficient and scalable multiprocessor fair
scheduling using distributed weighted round-robin. ACM SIGPLAN Notices 44(4),
65 (2009)

Mazouz, A., Touati, S.A.A., Barthou, D.: Study of variations of native program
execution times on multi-core architectures. In: Proc. of Int’l Conf. on Complex,
Intelligent and Software Intensive Systems, pp. 919-924 (2010)

Nolan, J.: Stable Distributions: Models for Heavy-tailed Data. Birkhauser (2003)

	beard_chamberlain_2014.pdf
	Use of a Levy Distribution for Modeling
Best Case Execution Time Variation
	1 Introduction and Background
	2 Methodology
	2.1 Synthetic Workload
	2.2 Hardware, Software, and Data Collection
	2.3 Distribution
	2.4 Parameterization

	3 Results
	4 Conclusions and Future Work
	References

