
Run Time Approximation of Non-blocking Service
Rates for Streaming Systems

Jonathan C. Beard
Roger D. Chamberlain

Jonathan C. Beard and Roger D. Chamberlain. Runtime Approximation
of Non-blocking Service Rates for Streaming Systems. In the
Proceedings of the 17th IEEE International Conference on High
Performance and Communications (HPCC), pages 792-797, August
2015

Dept. of Computer Science and Engineering
Washington University in St. Louis

Run Time Approximation of Non-blocking Service
Rates for Streaming Systems

Jonathan C. Beard∗†
∗ARM Research - Austin, TX

Email: jonathan.beard@arm.com

Roger D. Chamberlain†
†Dept. of Computer Science and Engineering

Washington University in St. Louis

Email: roger@wustl.edu

Abstract—Stream processing is a compute paradigm that
promises safe and efficient parallelism. Its realization requires
optimization of multiple parameters such as kernel placement
and communications. Most techniques to optimize streaming
systems use queueing network models or network flow models,
which often require estimates of the execution rate of each
compute kernel. This is known as the non-blocking “service rate”
of the kernel within the queueing literature. Current approaches
to divining service rates are static. To maintain a tuned applica-
tion during execution (while online) with non-static workloads,
dynamic instrumentation of service rate is highly desirable. Our
approach enables online service rate monitoring for streaming
applications under most conditions, obviating the need to rely
on steady state predictions for what are likely non-steady state
phenomena. This work describes an algorithm to approximate
non-blocking service rate, its implementation in the open source
RaftLib [2] framework, and validates the methodology using
streaming applications on multi-core hardware.

I. INTRODUCTION

Stream processing (or data-flow programming) is a com-
pute paradigm that enables parallel execution of sequentially
constructed kernels. This is accomplished by managing the
scheduling of kernels and the flows of data (called streams)
from one sequentially programmed kernel to the next. Queue-
ing behavior naturally arises between two independent kernels.
Selecting the correct queue capacity (buffer size) is one param-
eter (of many) that can be critical to the overall performance
of the streaming system. Doing so often requires information,
such as the service rate of each kernel, not typically available
at run time (online). Complicating matters further, many ana-
lytic methods used to solve for optimal buffer size require an
understanding of the underlying service process distribution,
not just its mean. Both service rate and process distribution can
be difficult to determine online without degrading application
performance. This paper proposes and demonstrates a heuristic
that enables online service rate approximation of each compute
kernel within a streaming system.

Optimizing the queueing network that models a streaming
application [11] can be performed using analytic techniques.
Ubiquitous to many of these models is the non-blocking ser-
vice rate of each compute kernel. Classic approaches assume
a stationary distribution. One only has to look at the variety of
data presented to any common application to realize that the
assumption of a persistent homogeneous workload is naive.
With the popularity of cloud computing we also have to
assume that the environment an application is executing in can

change at a moments notice, therefore we must build applica-
tions that can be resilient to perturbations in their execution
environment. We focus on low overhead instrumentation that
will enable more resilient stream processing applications by
informing the runtime when conditions change. To the best
of our knowledge there have been no other low overhead
approaches to determine the online service rate of a compute
kernel executing within a streaming system.

II. BACKGROUND & RELATED WORK

At its core, this work is about low-overhead instrumen-
tation of software systems. Early software instrumentation
tools include call graph analyzers such as gprof [6]. Other
instrumentation tools such as TAU [14] provide low overhead
instrumentation and visualization for MPI style systems. What
these tools don’t provide is a tool for reporting buffer perfor-
mance during execution, our instrumentation does.

Modern stream processing systems can dynamically re-
optimize in response to changing conditions (workload and/or
computing environment). To re-optimize buffer allocations
there are generally two choices: empirical search or analytic
queueing models. Queueing models are desirable for this
purpose since they can divine a buffer size directly, eschewing
unnecessary buffer re-allocations. Utilizing these models dy-
namically, however, requires dynamic instrumentation. Tools
such as DTrace [3] and Pin [12] can provide certain levels
of dynamic information on executing threads. Our approach
differs from the above in that we are specifically targeting
methods for estimating online service rate in a low overhead
manner.

Work by Lancaster et al. [10] and Chamberlain and Lan-
caster [4] laid out logic that could ostensibly make online
service rate determination possible. They suggest measuring
the throughput into a kernel when there is sufficient data
available within its input queue(s) and no back-pressure from
its output queue(s). This logic works well for FPGA-based
systems where hardware is controlled by the developer. For
multi-core systems, however, this logic is too simplistic. The
aforementioned work assumes that the measurements of a non-
blocked service rate are all equal (i.e., the full service rate is
observed at every sample point). In reality things like partially
full queues result in less than accurate service rate estimates
using this procedure. Anomalies such as cache behavior and
clock variations can exacerbate understanding of the true

2015 IEEE 17th International Conference on High Performance Computing and Communications (HPCC), 2015 IEEE 7th

International Symposium on Cyberspace Safety and Security (CSS), and 2015 IEEE 12th International Conf on Embedded Software

and Systems (ICESS)

978-1-4799-8937-9/15 $31.00 © 2015 IEEE
DOI 10.1109/HPCC-CSS-ICESS.2015.64

792

service rate of a compute kernel. Making matters worse are
context swaps that occur when one thread is observing another.
In reality, sampling the service rate of a compute kernel looks
like Figure 1 where multiple outliers and noise confound
understanding of the true service rate.

Fig. 1. Direct observations of the service rate, using the logic of [4], for
a nominally fixed rate micro-benchmark kernel. The x-axis is the increasing
observation index with time, the y-axis represents the actual data rate observed
at each sample point. The red dashed line is the nominal service rate.

Central to accurate estimation of service rate is observing
non-blocking reads and writes by the server. While executing,
the probability of observing a non-blocked read or write to
a queue in general is very low for high performance systems
(i.e., those systems whose compute kernels have high utiliza-
tion). The equations below (a modification of the equations
given by Kleinrock [9]) give the probabilities for the simplified
case where each server’s process is Poisson and only a single
in-bound and out-bound queue are considered (also known as
an M/M/1 [8] queue; Table I lists variable definitions).

TABLE I
NOMENCLATURE USED FOR QUEUEING EQUATIONS.

Symbol Description
µs mean service rate
ρ server utilization
C capacity of output queue
T sampling period of monitor
k items needed by server during T

k = ⌈µsT ⌉
PrREAD(T, ρ, µs) = ρk

PrWRITE(T,C, ρ, µs) =

{
1− ρC−k+1 C ≥ µsT

0 C < µsT

In general the shorter the service time, the lower the
probability of observing a non-blocking read or write. Length-
ening the observation period, T , decreases the probability that
blocking will not occur during the observation period whereas
shorter periods increase the probability of observation (i.e., no
blocking during the period).

III. MONITORING MECHANISM

The simple act of observing a rate can change the behavior
being observed. To minimize this effect, our instrumentation

scheme (implemented within RaftLib) uses a separate moni-
toring thread. The benefit of this arrangement is that it moves
the instrumentation out of the critical path of the application.
The drawback is that this increases the sensitivity to timing
precision and the probability of noise within each observation.

To minimize the overall performance impact, the data
necessary to estimate the service rate is split between the
queue itself and the monitor thread. This has the benefit of
transmitting data only when absolutely necessary. The queue
itself is visible to three distinct threads: the monitor thread
and the producer/consumer threads at either terminus of the
queue. The only logic to consider within the queue itself is
that necessary to tell the monitor thread if an operation was
blocked and to increment a item counter on each read and
write. The monitor thread reads these variables (which will
be called tc from this point forward) and resets them upon
copying their values.

The monitor thread samples at a fixed interval of time T .
When the monitor thread samples tc, it has no way of knowing
if the server at either end only performed complete executions
or partial ones. The only thing it can be certain of is that
the data read are non-blocking if the boolean value is set
appropriately. This means that tc can represent something less
than the actual service rate. Also contained within the tc are
effects not-representative of average behavior; these include:
caching effects, interrupts, memory contention, faults, etc.

IV. SERVICE RATE MONITORING

Online estimation of service rate requires four basic steps:
fixing a stable sampling period T , sampling only the correct
states (expounded upon below), reducing and de-noising the
data, then estimating the non-blocking service rate. The system
has a finite number of states which are useful in estimating the
non-blocking service rate. The most obvious states to ignore
are those where the in-bound or out-bound queue is blocked
(see Lancaster et al.). The others, as mentioned in Section III,
are data unrepresentative of the non-blocking service rate.
Symbols used in this section are summarized in Table II.

TABLE II
NOMENCLATURE USED FOR SECTION IV.

Symbol Description
T sampling period
tc sum of non-blocking reads during T
S windowed set of items tc
S′ Gaussian filtered set of S

q 95th quantile of S′

q̄ population averaged q
d bytes per data item

A. Sampling Period Determination

Each queue within a streaming application has its own
monitor thread. As such, each T is queue specific. An initial
requirement is a stable time reference across all utilized cores.
The timing method described by Beard and Chamberlain [1] is
employed. This provides a stable and monotonically increasing

793

time reference whose latency on our test systems is approxi-
mately 50−300 ns across the cores. Despite a relatively stable
time reference, two trends complicate matters. First, as service
time decreases, the probability of observing a non-blocking
queue transaction decreases as well. Second, noise from the
system and timing mechanism dominate for very small values
of T making observations unusable.

Modern computing systems introduce some level of noise
into the measurements [1]. Choosing a a longer sampling
period (T) reduces the impact of the noise. We wish, however,
to observe kernel executions that are unimpeded by their
environment (no blocking due to upstream or downstream
effects). This goal stands in juxtaposition to noise reduction
since shorter sampling periods increase the probability of
observing non-blocked periods of execution.

Figure 2 shows how the empirically observed sampling
period varies with desired sampling period, T , starting with the
minimum latency (∼300 ns) of back to back timing requests
then iterating over multiples of that latency. The monitor
thread tries to find the largest time period T (moving to the
right in Figure 2) while minimizing observed queue blockage
during the period. As is expected, the noise is less significant
compared to the period as T increases.

Fig. 2. Observations of T variation using the timing mechanism of [1]. The @
symbol represents the minimum resolution of the timing mechanism (∼300 ns
for this example), subsequent box and whisker observations are the indicated
multiple of @. The trend indicates wider time frames (up to the approximate
time quanta for the scheduler) give more stable values of T .

B. Service Rate Heuristic

Once a stable T has been determined, the next step is
estimating the online service rate. The head and tail of each
queue store counts of non-blocking transactions, tc, as well
as the size of each item copied, d. The instrumentation thread
samples tc from the head and tail every T seconds. We will
use an estimate of the maximum, well-behaved tc to estimate
the service rate of interest. (well-behaved is articulated below).
For simplicity, the discussion that follows will consider only
actions that occur at the head of the queue with the under-
standing that equivalent actions can occur at the tail as well.

Algorithm 1 summarizes the process described below. This
description presumes an implementation of a streaming mean
and standard deviation (see Chan et al. [5]) through the
updateStats(), updateMeanQ() and resetStats() methods.
The mechanics of the QConverged() function are described
later.

stream← tc;
output← output stream;
S ← {};
while True do

tccurrent ← pop(stream);
S′ ← {};
for i← gaussradius,

i < |window|− gaussradius,i++ do
val← Dot(S[i− gaussradius;;i+
gaussradius],GaussianFilter);
push(S′, val);

end
µS′ ←Mean(S′);
σS′ ←StandardDeviation(S′);
q ←NQuantileFunction(µS′ , σS′ , .95);
updateStats(q); if QConverged() then

push(output, getMeanQ());
resetStats();

end
end

Algorithm 1: Service rate heuristic.

While sampling tc, the timing thread creates a list S,
ordered by entry time. S is maintained as a sliding window
of size w. If S is of sufficient size, it is expected that the
set S tends toward a Gaussian distribution (N (µS ,σS)), as
it is a list of sums of non-blocking transactions. S, however
consists of many data that are not necessarily indicative of non-
blocking service rates. These elements arise from the following
conditions: (1) the monitor thread observed only a partial firing
of the server (i.e., the server had the capability to remove j
items from the queue but only < j items were evident when
retrieving tc); (2) the monitor thread clears the queue’s current
value of tc during a firing (i.e., the counter maintaining tc is
non-locking because locking it introduces delay); (3) outlier
conditions as discussed in Section II which are not indicative
of normal behavior.

The underlying distribution of S without outliers tends
towards a Gaussian, therefore a Gaussian discrete filter is used
to shape the data in S so that it is sufficiently well-behaved
(de-noised) for estimating the maximum. The filtered data
make up the set S′. Equation 2 describes the kernel, where
x ← [−2, 2] is the index with respect to the center. Through
experimentation, a radius of two was selected as providing the
best balance of fast computation and smoothing effect.

GaussianFilterKernel(x)← e−
x
2

2

√
2π

(2)

Once filtered, S′ is used to estimate the maximum. Since
we must still account for outliers, rather than explicitly use the
maximum, we estimate the maximum via the 95th quantile of
S′. Operationally, we use the sample mean, µ̂S′ , and standard
deviation, σ̂S′ , to estimate N (µS′ ,σS′), and the quantile is of
course

q = µ̂S′ + 1.64485 σ̂S′ . (3)

794

Stability is gained by using the streaming mean of succes-
sive values of qi (e.g., Figure 3). Where q̄ is the averaged, esti-
mated maximum non-blocking transaction count tc, assuming
only one queue for simplicity, the service rate is simply q̄×d

T
.

This, however also assumes that the underlying distribution
generating tc is at least stable over the observation period. As
with all online estimates, q̄ becomes more stable with more
observations (e.g., Figure 4).

Fig. 3. Plot of the values of q with increasing time. Each value of q is
the result of a computation of Equation 3. The dashed line across the y-axis
represents the set or expected service rate.

Fig. 4. An example of convergence of q̄ with increasing time. Data is from
a single queue tandem server micro-benchmark, observing the departure rate
from the queue to the server with the set service rate marked as a dashed line.

Convergence of q̄ to a “stable” value is expected after a
sufficiently large number of observations. In practice, with µs-
level sampling, convergence is rarely an issue. Determining
when q̄ is stable is accomplished by observing σ of q̄.
Minimizing the standard deviation is equivalent to minimizing
the error of q̄. With a finite number of samples, it is unlikely
that σ(q̄) will ever equal to zero, however observing the rate
of change of the error term to a given tolerance is a typical
approach. To accomplish this in a streaming manner, a similar
approach to that taken previously is used with differing filters
to approximate the relative rate of change over the window.
A discrete Gaussian filter with a radius of one is followed
by a Laplacian filter with discretized values (in practice, one
combined filter is used). The kernel is given in Equation 4
with x ← [−1, 1] and σ ← 1

2
. The minimum and maximum

of the filtered σ(q̄) are kept over a window w ← 16 where
convergence is judged by these values all being within some
tolerance (ours is set to 5× 10−7).

LaplacianGaussian(x)← x2e−
x
2

2σ2

√
2πσ5

− e−
x
2

2σ2

√
2πσ3

(4)

An example of a stable and converged q̄ is shown in
Figure 5, where the data plot is of the dual filtered σ(q̄) and
the vertical line is the point of convergence. The time scale on
the x-axis is the same as that of Figure 4 so that the stability
point on Figure 5 matches that of Figure 4.

Fig. 5. Plot of the filtered standard deviation of q̄, the point of convergence
is indicated by the vertical dashed line.

Once convergence is achieved, it is a simple matter to
restart the process described above, and begin the search again.
Figure 6 shows a sample run where the average service rates
are known (solid blue y-axis grid lines). The x-axis grid
lines (dashed vertical lines) show points of convergence to
stable solutions after subsequent restarts of the approximation
algorithm.

Fig. 6. Example of q̄ adapting to two service rates during execution of a
micro-benchmark. The instrumentation captures the departure rate from a
single queue to a compute kernel.

V. EXPERIMENTAL SETUP

The hardware used for all empirical evaluation are listed in
Table III. All binaries are compiled with the “-O2” compiler
flag using the GNU GCC compiler (version 4.8.3). The stream-
ing framework used is the RaftLib C++ template library [2].

In order to assess our method over a wide range of con-
ditions, a simple micro-benchmark consisting of two threads
connected by a lock-free queue is used. Each thread consists
of a while loop that consumes a fixed amount of time in order
to simulate work with a known service rate. The amount of

795

TABLE III
SUMMARY OF HARDWARE USED FOR EMPIRICAL EVALUATION.

ID Processor OS Memory
1 2 × AMD Opteron 6136 Linux 2.6.32 64 GB
2 2 × Intel E5-2650 Linux 2.6.32 64 GB
3 2 × Intel Xeon X5472 Darwin 13.4.0 32 GB
4 2 × Six-Core AMD Opteron 2435 Linux 3.10.37 32 GB
5 Intel Xeon CPU E3-1225 Linux 3.13.9 8 GB

work, or service-rate, is generated using a random number
generator sourced from the GNU Scientific Library. Service
time distributions are set as either exponential or deterministic.
Parameterization of the distributions is selected using a pseudo
random number source. The exact parameterization range and
distribution are noted where applicable.

In addition to the micro-benchmarks described above, two
full streaming applications are also explored. The first, matrix
multiply, is a synchronous data flow application that is ex-
pected to have relatively stable service rates. The second is a
string search application that has variable rates. Ground truth
service rates for each kernel are determined by executing each
kernel offline and measuring the rates individually.

Matrix Multiply: Matrix multiplication is central to many
computing tasks. Implemented here is a simple dense matrix
multiply (C = AB) where the multiplication is broken into
multiple dot-product operations. The dot-product operation
is executed as a compute kernel with the matrix rows and
columns streamed to it. This kernel can be duplicated n times.
The result is then streamed to a reducer kernel which re-
forms the output matrix C. This application differs from the
micro-benchmarks in that it uses real data read from disk
and performs multiple operations on it. As with the micro-
benchmarks, it has the advantage of having a continuous
output stream from both the matrix read and dot-product
operations. The data set used is a 10, 000× 10, 000 matrix of
single precision floating point numbers produced by a uniform
random number generator.

Rabin-Karp String Search: The Rabin-Karp [7] algorithm
is classically used to search a text for a set of patterns. It
utilizes a “rolling hash” kernel (replicated up to n times) to
efficiently compute the hash of the text being searched as it
is streamed in. The next kernel verifies the match from the
rolling hash to ensure hash collisions don’t cause spurious
matches. The verification matching kernel can be duplicated
up to j times. The final kernel simply reduces the output from
the verification kernel(s), returning the byte position of each
match. The corpus consists of 2 GB of the string, “foobar.”

VI. RESULTS

The methods that we have described are designed to enable
online service rate determination. Just how well do these meth-
ods work in real systems while they are executing? In order to
evaluate this quantitatively, several sets of micro-benchmarks
and real applications are instrumented to determine the mean
service rate of a given server.

Each micro-benchmark is constructed with a tandem con-
figuration of two kernels (A and B). The upstream kernel A
provides a fixed distribution arrival process to kernel B. The
service rate of kernel B is varied for each micro-benchmark
(0.8 MB/s → ∼ 8 MB/s). The results comprise 1800 execu-
tions in total. The goal is to find the service rate of kernel B
without a priori knowledge of the actual rate. Figure 7 is a
histogram of the percent difference between the service rate
estimated via our method and the “set” nominal rate.

Fig. 7. Histogram of the probability of estimating the service rate of
micro-benchmark kernel B. Each execution is a data point, with the percent

difference calculated as ((observed rate−set rate)
set rate

) × 100. Not plotted are four
outliers to right of the plotted data which are greater than 1000% difference.

We see in this histogram that generally the correspondence
between estimated service rate and ideal service rate is reason-
ably good. When it errs, the estimate is typically low, which
is consistent with previous empirical data, in which actual
realized execution times are typically longer than nominal [1].
The majority of the results are within 20% of nominal.

We implement change by moving the mean of the distribu-
tion halfway through execution of kernel B We are interested
in whether our instrumentation can detect this change, poten-
tially enabling many online optimizations. An example with a
wide switch in service rate is shown in Figure 8.

Fig. 8. Depiction of the ideal (drawn from empirical data) of the instrumen-
tation’s ability to estimate the service rate while the application is executing.
Each dot represents the converged service rate estimate (y-axis). The top and
bottom dashed lines represent the first and second phases.

In order to classify the dual phase results into categories, a
percent difference (20%) from the manually determined rates
for each phase is used. Approximately 14.7% of the data had
nominal service rate shifts that were known to be less than the
20% criteria specified. Table IV shows the effectiveness of the

796

heuristic in categorizing distinct execution phases of the micro-
benchmarks. Here two observations can be made. First, the
system correctly detects both phases more effectively in high
utilization conditions, which are the conditions under which
correct classification is likely to be more important. Second,
the classification errors that are made are all conservative. That
is, it is correctly detecting the final condition of the kernel,
indicative of a conservative settling period for rate estimation.

TABLE IV
DATA FROM DUAL-PHASE MICRO-BENCHMARK.

Phases Detected ρ < 0.5 ρ ≥ 0.5
Neither phase 0.0% 0.3%
1st phase only 0.0% 0.0%
2nd phase only 56.6% 27.5%
Both phases 43.4% 72.2%

The real test of any instrumentation is how well it can
handle situations beyond those that are carefully controlled.
The matrix multiply application is executed on platform 2 from
Table III with the number of parallel dot-products set to five.
Only the reduce kernel is instrumented. Overall the results are
not quite as clean as those of the micro-benchmark, but that is
expected given the chosen kernel has an extremely low ρ. A
majority (63%) are within the range of measurements observed
using isolated instrumentation.

Fig. 9. Plot of the estimated service rates of the reduce kernel. The manually
determined rate for this experimental setup ranged from 0.05 MB/s to
0.43 MB/s. Overall, a majority of the results, ∼63%, are within this range.

The results for the Rabin-Karp application are also relatively
good for a variable data rate application with low ρ. For
this case ∼ 35% of the estimates are within the range of
rates determined by manual time averaged estimates. The
others are quite close and we believe represent the transient
behaviors of a real application. The time averaged online
service rate estimates are within 5% of (just below) the
manually determined average service rate; indicating that the
variation in online observations are likely behaviors that only
last for fractions of the overall application.

Low overhead instrumentation should have little, if any,
impact on the execution of the application itself. Using the
single queue micro-benchmark, execution time is measured
with and without instrumentation. Using the GNU time com-
mand over dozens of executions, the average impact is only
1 - 2%. Impact to the overall system was equally minimal, load
average increased only a small amount (by 0.1 on average).

VII. CONCLUSIONS & FUTURE WORK

We demonstrate an algorithm for approximating the online
service rate of kernels in a streaming system. Overall our
methodology works quite well. When the heuristic fails, it
usually fails knowingly (e.g., no convergence is reached or
non-blocking reads were not observed). It has been validated
using micro-benchmarks and two full streaming applications.
While evidence has been shown for the estimation of the ser-
vice rate’s central moment and its variance, efficient methods
also exist for streaming computation of higher moments [13].
RaftLib currently supports the methods described in this paper.
Future work, and extensions to RaftLib’s instrumentation
system, will include higher moment estimation.

ACKNOWLEDGMENTS

This work was supported by Exegy, Inc., and VelociData,
Inc. Washington University in St. Louis and R. Chamberlain
receive income based on a license of technology by the
university to Exegy, Inc., and VelociData, Inc.

REFERENCES

[1] J. C. Beard and R. D. Chamberlain, “Use of a Levy distribution for
modeling best case execution time variation,” in Computer Performance
Engineering, ser. Lecture Notes in Computer Science, A. Horváth and
K. Wolter, Eds. Springer, Sep. 2014, vol. 8721, pp. 74–88.

[2] J. C. Beard, P. Li, and R. D. Chamberlain, “Raftlib: A C++ Template
Library for High Performance Stream Parallel Processing,” in Proc. of
Programming Models and Applications on Multicores and Manycores.
ACM, Feb. 2015, pp. 96–105.

[3] B. Cantrill, M. W. Shapiro, A. H. Leventhal et al., “Dynamic instrumen-
tation of production systems.” in USENIX Annual Technical Conference,
General Track, 2004, pp. 15–28.

[4] R. D. Chamberlain and J. M. Lancaster, “Better languages for more
effective designing,” in Proc. of Int’l Conf. on Engineering of Reconfig-
urable Systems & Algorithms, Jul. 2010.

[5] T. F. Chan, G. H. Golub, and R. J. LeVeque, “Algorithms for computing
the sample variance: Analysis and recommendations,” The American
Statistician, vol. 37, no. 3, pp. 242–247, 1983.

[6] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “gprof: A call graph
execution profiler,” ACM Sigplan Notices, vol. 17, no. 6, pp. 120–126,
1982.

[7] R. M. Karp and M. O. Rabin, “Efficient randomized pattern-matching
algorithms,” IBM Journal of Research and Development, vol. 31, no. 2,
pp. 249–260, 1987.

[8] M. Kendall and W. Buckland, A Dictionary of Statistical Terms. Ed-
inburgh and London: Published for the International Statistical Institute
by Oliver & Boyd, Ltd., 1957.

[9] L. Kleinrock, Queueing Systems. Volume 1: Theory. Wiley-Interscience,
1975.

[10] J. M. Lancaster, J. G. Wingbermuehle, and R. D. Chamberlain, “Asking
for performance: Exploiting developer intuition to guide instrumentation
with TimeTrial,” in Proc. 13th Int’l Conf. High Performance Computing
and Communications, Sep. 2011, pp. 321–330.

[11] S. S. Lavenberg, “A perspective on queueing models of computer
performance,” Performance Evaluation, vol. 10, no. 1, pp. 53–76, 1989.

[12] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” ACM Sigplan
Notices, vol. 40, no. 6, pp. 190–200, 2005.

[13] P. Pébay, “Formulas for robust, one-pass parallel computation of
covariances and arbitrary-order statistical moments,” Sandia Report
SAND2008-6212, Sandia National Laboratories, 2008.

[14] S. S. Shende and A. D. Malony, “The TAU parallel performance system,”
International Journal of High Performance Computing Applications,
vol. 20, no. 2, pp. 287–311, 2006.

797

