
Online Automated Reliability Classification of
Queueing Models for Streaming Processing
Using Support Vector Machines

Jonathan C. Beard
Cooper Epstein
Roger D. Chamberlain

Jonathan C. Beard, Cooper Epstein, and Roger D. Chamberlain. “Online
Automated Reliability Classification of Queueing Models for Streaming
Processing Using Support Vector Machines,” in Proc. of 21st International
Conference on Parallel and Distributed Computing (Euro-Par), Lecture
Notes in Computer Science, Vol. 9233, August 2015, pp. 82-93.

Dept. of Computer Science and Engineering
Washington University in St. Louis

Online Automated Reliability Classification
of Queueing Models for Streaming Processing

Using Support Vector Machines

Jonathan C. Beard(B), Cooper Epstein, and Roger D. Chamberlain

Department of Computer Science and Engineering, Washington University
in St. Louis, St. Louis, Missouri

{jbeard,epsteinc,roger}@wustl.edu

Abstract. When do you trust a performance model? More specifi-
cally, when can a particular model be used for a specific application?
Once a stochastic model is selected, its parameters must be determined.
This involves instrumentation, data collection, and finally interpretation;
which are very time consuming. Even when done correctly, the results
hold for only the conditions under which the system was characterized.
For modern, dynamic stream processing systems, this is far too slow
if a model-based approach to performance tuning is to be considered.
This work demonstrates the use of a Support Vector Machine (SVM) to
determine if a stochastic queueing model is usable or not for a particular
queueing station within a streaming application. When combined with
methods for online service rate approximation, our SVM approach can
select models while the application is executing (online). The method is
tested on a variety of hardware and software platforms. The technique is
shown to be highly effective for determining the applicability of M/M/1
and M/D/1 queueing models to stream processing applications.

1 Introduction

Stochastic modeling is essential to the optimization of performant stream
processing systems. Successful application of a stochastic queueing model often
requires knowledge of many factors that are unknowable without extensive appli-
cation and hardware characterization. Extensive characterization, is however
quite expensive (both in time and effort) when considering streaming applica-
tions of any appreciable size. Complicating matters further is that each stream-
ing application could require that multiple models be selected in order to fully
model its performance; each with its own assumptions and parameters that must
be quantified before use. Even when modeling assumptions are verified offline,
often they are broken by unpredictable behavior that can occur during execution.

R.D. Chamberlain—This work was supported by Exegy, Inc. Washington Univ. and
R. Chamberlain receive income based on the license of technology by the university
to Exegy, Inc.

c© Springer-Verlag Berlin Heidelberg 2015
J.L. Träff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 82–93, 2015.
DOI: 10.1007/978-3-662-48096-0 7

Online Automated Reliability Classification of Queueing Models 83

This paper proposes a machine learning method for classifying the reliability of
stochastic queueing models for stream processing systems.

Stream processing is a compute paradigm that views an application as a
set of compute kernels connected via communications links or “streams” (exam-
ple shown in Fig. 1). Stream processing is increasingly used by multi-disciplinary
fields with names such as computational-x and x-informatics (e.g., biology, astro-
physics) where the focus is on safe and fast parallelism of a specific applica-
tion. Many of these applications involve real-time or latency sensitive big data
processing necessitating usage of many parallel kernels on several compute cores.
Intrinsically stream processing comes with a high communications cost and
infrastructure overhead. Optimizing or reducing the communication within a
streaming application is often a non-trivial task, however it is central to the
widespread adoption of stream processing techniques.

Fig. 1. The top image is an example of a simple streaming system with two compute
kernels (labeled A & B). Each kernel could be assigned to any number of compute
resources depending on the platform (e.g., processor core, graphics engine). The bottom
image is the resulting queue with arrival process A (emanating from compute kernel A)
and server B. For more complex systems this becomes a queueing network.

Streams allocated within a streaming application can be modeled as a sto-
chastic queueing network for which there are well understood relationships
between input arrival rates, computational service rates, queue occupancies, etc.,
in the steady state. Understanding the streaming application’s queueing network
is essential to its optimization. Streaming systems such as RaftLib [4], can spawn
tens to hundreds of queues; each potentially with a unique environment and char-
acteristics to model. Hand selection of performance models for these applications
is clearly impractical. Offline modeling attempts are often thwarted by dynamic
characteristics present within the system that were not included in the model.
This paper outlines what is perhaps an easier route. Utilizing 76 features easily
extracted from a system along with a streaming approximation of non-blocking
service rate, we show that a Support Vector Machine (SVM) can identify where
a model can and cannot be used. Results are shown that demonstrate that this
model is generalizable in trained form to multiple operating systems and hard-
ware types. In addition to testing the trained model on micro-benchmark data,
two full streaming applications are utilized: matrix multiplication and Rabin-
Karp string search.

84 J.C. Beard et al.

2 Methodology

For most stream processing systems (including RaftLib) the queues between
compute kernels are directly implied as a result of application construction.
In order to use models for optimizing the queues within a stream process-
ing application the service rate must be determined. Work from Beard and
Chamberlain [3] enables the online determination of mean service rates for
kernels. Working under the assumption that accurate determination of service
distributions will be too expensive to be practical, we instead learn the applica-
bility of two distinct queueing models based on features (shown in Fig. 2) that
are knowable during execution with low overhead. Once trained, the parameters
are supplied to a SVM which will label each parameter combination as being
“usable” or “not” for the stochastic queuing model (in our case the M/D/1 and
M/M/1 models) for which the SVM is trained.

Fig. 2. Word cloud depicting features used for machine learning process with the font
size representing the significance of the feature as determined by [8].

A SVM is a method to separate a multi-dimensional set of data into two
classes by a separating hyperplane. It works by maximizing the margin between
the hyperplane and the support vectors closest to the plane. The theory behind
these are covered by relevant texts on the subject [10,15]. An SVM labels an
observation with a learned class label based on the solution to Eq. (1) [5,9] (the
dual form is given, e is a vector of ones of length l, Q is an l × l matrix defined
by Qi,j ← yiyjK(xi, xj) K is a kernel function, specific symbolic names match
those of [6]). A common parameter selected to optimize the performance of the
SVM is the penalty parameter, C, discussed further in Sect. 2.2.

min
α

1
2αTQα − eT α

subject to 0 ≤ αi ≤ C, i = 1, . . . , l,
(1)

K(x, y) = e−γ||x−y||2 , y > 0. (2)

Online Automated Reliability Classification of Queueing Models 85

A Radial Basis Function (RBF, [13], Eq. (2)) is used to map attributes to
features. The parameter γ is optimized separately in order to maximize the per-
formance of the SVM/Kernel combination. This work does not seek to add new
techniques to SVM or machine learning theory, rather it is focused on expand-
ing the application of SVMs to judging the reliability of stochastic performance
models for streaming systems.

The stochastic mean queue occupancy models under consideration by our
SVM are intended for systems at steady state. We apply these models to non-
steady state applications with steady state behavior over small periods of time
(i.e., they have multi-phase distributions). Applications whose behavior is too
erratic to have any steady state behavior over any period of time are not good
candidates for these models or our method. When testing the SVM we will test
with applications that do exhibit steady state behavior and we discuss how this
changes for applications whose distributions are more variable. Architectural
features of a specific platform such as cache size are used as features for this
work. As such we assume that we can find them either via literature search or
directly by querying the hardware. Platforms where this information is unknown
are avoided, however a surfeit of such platforms exists (see Table 1).

Implicit within most stochastic queueing models (save for the circumstance
of a deterministic queue) is that ρ < 1 to obtain a finite queue. In this work, it is
expected that the SVM should be able to find this relationship based upon the
training process. It is shown in Sect. 3 that this is indeed the case. If deciding
on a queueing model were as simple as selecting one class for ρ ≥ 1 and another
for ρ < 1 then the method described in this paper would be relatively incon-
sequential. However we also assume that the SVM is not explicitly told what
the actual service process distributions are of the compute kernels modulating
data arrival and service so this relationship is not quite so binary. It is also
shown in the results that training the SVM with broader distributions slightly
decreases the overall classification accuracy while increasing the generalizability
of the trained SVM.

In order to train and test the SVM we use a set of micro-benchmark and full
benchmark streaming applications (described below). All are authored using the
RaftLib library in C++ and compiled using g++ using the -01 optimization flag.

A micro-benchmark (with the topology shown in Fig. 1) has the advantage of
having a known underlying service distribution for both compute kernels A and B.
A synthetic workload for each compute kernel is composed of a simple busy-wait
loop whose looping is dependent on a random number generator (either Expo-
nential, Gaussian, Deterministic, or a mixture of multiple random distributions
are produced). Simple workloads similar to those used within the real applica-
tions also constitute up to 5% of the micro-benchmark loop workloads. Data
exiting the servers are limited to one 8-byte item per firing.

Dense matrix multiply (C = AB) is a staple of many computational tasks.
Our implementation divides the operation into a series of dot-product operations.
Matrix rows and columns are streamed to n parallel dot-product kernels (see
Fig. 3 for the topology). The result is streamed to a reducer kernel (at right)

86 J.C. Beard et al.

Fig. 3. Matrix multiply application (left image). The first kernel reads both matrices to
be multiplied and streams the data to an arbitrary (n) number of dot product kernels.
The final kernel reduces the input from the dot to a multiplied matrix. Rabin-Karp
matching algorithm (right image). The first compute kernel (RFD, at left) reads the
file to be searched, hashes the patterns to search and distributes the data to n “rolling-
hash” kernel(s). Next are j, j ≤ n verification kernel(s) to guard against matches due to
hash collision. The final kernel (at right) is a reducer which consolidates all the results.

which re-forms the output matrix, C. This application differs from the micro-
benchmark in that it uses data read from disk and performs multiple operations
on it. As with the micro-benchmark, it has the advantage of having a continuous
output stream from both the matrix read and dot-product operations. The data
set used is a single matrix (10000 × 10000) of single precision floating point
numbers produced by a uniform random number generator.

The Rabin-Karp [12] algorithm is classically used to search a text for a set of
patterns. The implementation divides the text amongst n parallel rolling-hash
functions whose output is streamed to j parallel verification kernels. The final
kernel simply reduces the output from the verification kernel(s), returning the
byte position of each match (see Fig. 3). The data set for our tests is 2 GB of
the phrase “foobar.”

2.1 Data Collection and Hardware

Using benchmarking the applications enumerated above, we were able to collect
a variety of features from each platform using a myriad of methods ranging from
system calls through architecture-specific methods. Service rate is also used,
which is approximated online via methods [3]. The number of features utilized
prohibit their complete enumeration, however some of the more pertinent ones
include: service rate, instruction set architecture, cache hierarchy sizes, operat-
ing system (OS) and version, scheduler, and main memory available (further
enumerated in Fig. 2).

To collect mean queue occupancy, a separate monitor thread is used for each
queue to sample the occupancy over the course of the application. For both real
and synthetic applications, the service times of compute kernels are verified via
monitoring the arrival and departure rate of data from each kernel with a non-
blocking infinite queue (implemented by ignoring the read and write pointers).

Online Automated Reliability Classification of Queueing Models 87

All timing is performed using the POSIX.1–2001 clock gettime() function with
a real time system clock using the setup described in [2].

Relying on measurements from only one hardware type or operating system
would undoubtedly bias any classification algorithm. To reduce the chance of bias
for one particular platform, empirical data are collected from platforms with the
processors and operating systems listed in Table 1. For all tests either the Linux
or Apple OS X versions of the completely fair scheduler are used. To unbias the
results further, task parallel sections of each application are replicated varying
numbers of times (up to 2x the number of physical processor cores available).
Application kernels are run “un-pinned.” That is, the compute core which each
executes on is assigned by the operating system and not by the user. Presum-
ably more stable results could be obtained by “pinning” each compute kernel to
dedicated cores, however this is not a realistic environment for many platforms.
Micro-benchmark data are collected from all of the platforms in Table 1, Matrix
multiply and Rabin-Karp Search data are collected from platforms 2, 8, 10,
and 15.

In all, approximately 45,000 observations were made for the micro-benchmark
application. This data is divided using a uniform random process into two sets
with a 20/80 split. The set with 20% of the data is used for training the SVM
and the 80% is set aside as a testing set. To give an idea of the range with
which the SVM is trained, the micro-benchmark training set has the following
specifications: approximately 8,200 observations, server utilization ranges from
close to zero to greater than one and distributions vary widely (a randomized mix
of Gaussian, Deterministic and the model’s expected Exponential Distribution
as well as some mixture distributions). For each of the other two applications, the
SVM trained exclusively on the training micro-benchmark data (same training
set as above) is used, with classification results reported in Sect. 3.

2.2 SVM and Training

Before the SVM can be trained as to which set of attributes to assign to a class,
a label must be provided. Our two classes are “use” and “don’t use” which are
encoded as a binary one and zero respectively. The SVM is trained to identify
one stochastic model at a time (i.e., either “use” or “don’t use” for M/M/1
or M/D/1 but not both at the same time). In order to label the dataset as to
which queueing model to use, a fixed difference is used. If the actual observed
queue occupancy is within n ← 5 items, then the model is deemed acceptable
otherwise false. A percentage based function for l shows a similar trend. After
sampled mean queue occupancy is used for labeling purposes, it is removed from
the data set presented to the SVM.

Feature selection is a very hot topic of research [11]. There are several meth-
ods that could be used including (but not limited to) Pearson correlation coeffi-
cients, Fisher information criterion score [8], Kolmogorov-Smirnov statistic [7].
Our selected feature set has a total of 35 linearly independent variables. The rest
of the features exhibit weak non-linear dependence between variables. Extensive
cross-validation followed by evaluating the Fisher information criterion score

88 J.C. Beard et al.

Table 1. Summary of processor types and operating systems used for both the micro-
benchmark and application data collection.

Platform Processor type OS Kernel version

P1 Intel Xeon CPU E5-2650 Linux 2.6.32

P2 Quad-Core AMD Opteron 2376 Linux 2.6.32

P3 Intel Xeon X5472 Darwin (OS X) 13.1.0

P4 Dual-Core AMD Opteron 2218 Linux 2.6.32

P5 ARM1176JZF-S Linux 3.10.37

P6 Dual-Core AMD Opteron 2222 SE Linux 3.0.27

P7 IBM Power PC 970 Linux 3.13.0

P8 Six-Core AMD Opteron 2431 Linux 3.0.27

P9 Intel Xeon E5345 Linux 2.6.32

P10 Intel Xeon CPU E3-1225 Linux 3.13.9

P11 Dual Core AMD Opteron 875 Linux 2.6.32

P12 AMD Opteron 6136 Linux 2.6.32

P13 ARM Cortex-A9 Linux 3.3.0

P14 Intel Core i5 M540 Darwin (OS X) 13.1.0

P15 AMD Opteron 6272 Linux 2.6.32

P16 Six-Core AMD Opteron 2435 Linux 3.0.27

P17 Dual Core AMD Opteron 280 Linux 2.6.32

P18 Quad-Core AMD Opteron 2387 Linux 2.6.32

P19 Dual-Core AMD Opteron 2220 Linux 2.6.32

P20 Dual-Core AMD Opteron 8214 Linux 2.6.32

showed that the training data relied extensively on 67 of our candidate features.
Most notably the variables that indicated the type of processor, operating sys-
tem kernel version and cache size ranked highest followed closely by amount of
main memory and total number of processes on the system. During the training
phase we noted that despite the Fisher information criteria results, the additional
9 features provided a significant increase in correct classification, therefore we
decided to include all 76 as opposed to the reduced set selected via statistical
feature selection.

For all data sets (and all attributes contained in each set) the values are
linearly scaled in the range [−1000, 1000] (see [14]). This causes a slight loss of
information, however it does prevent extreme values from biasing the training
process and reduces the precision necessary for the representation. Once all the
data are scaled, there are a few SVM specific parameters that must be optimized
in order to maximize classification performance (γ and C). We use a branch and
bound search for the best parameters for both the RBF Kernel (γ ← 4) and for
the penalty parameter (C ← 32768). The branch and bound search is performed

Online Automated Reliability Classification of Queueing Models 89

by training and cross-validating the SVM using various values of γ and C for
the training data set discussed above. The SVM framework utilized in this work
is sourced from LIBSVM [6].

3 Results

To evaluate how effective a SVM is for model reliability classification we’ll com-
pare the class label predicted by the SVM compared to that of ground truth
as determined by the labeling process. If the queueing model is usable and the
predicted class is “use” then we have a true positive (TP). Consequently the
rest of the error types true negative (TN), false positive (FP) and false negative
(FN) follow this pattern.

The micro-benchmark data (Microtest) consists of queues whose servers have
widely varying distributions and server utilizations. Utilization ranges from close
to zero through greater than one (i.e., the queues are always full). As enumerated
in Fig. 4, the SVM correctly predicts (TP or TN) 88.1% of the test instances for
the M/M/1 model and 83.4% for the M/D/1 model. Overall these results are
quite good compared to manual selection [1]. Not only do these results improve
upon manual mean queue occupancy predictions, they are actually faster since
the user doesn’t have to evaluate the service time and arrival process distribu-
tions, and they can be done online while the application is executing.

Fig. 4. Summary of overall classification rate by error category. In general the correct
classification is quite high TP + TN > 83% in all cases.

Server utilization (ρ) is a classic and simple test to divine if a mean queue
length model is suitable. At high ρ it is assumed that the M/M/1 and M/D/1
models can diverge widely from reality. It is therefore assumed that our SVM
should be able to discern this intuition from its training without being given
the logic via human intervention. Figure 5 shows a box and whisker plot for
the error types separated by ρ. As expected the middle ρ ranges offer the most
true positive results. Also expected is the correlation between high ρ and true
negatives. Slightly unexpected was the relationship between ρ and false positives.

90 J.C. Beard et al.

Fig. 5. Summary of true positive (TP), true negative (TN), false positive (FP), false
negative (FN) classifications for the M/M/1 (left) and M/D/1 (right) queueing models
for the microbenchmark’s single queue by server utilization ρ demonstrating empirically
that the SVM can recognize the instability of these models at high ρ.

Directly addressing the performance and confidence of the SVM is the prob-
ability of class assignment. Given the high numbers of TP and TN it would be
useful to know how confident the SVM is in placing each of these feature sets into
a category. Probability estimates are not directly provided by the SVM, however
there are a variety of methods which can generate a probability of class assign-
ment [16]. We use the median class assignment probability for each error category
as it is a bit more robust to outliers than the mean. For the M/M/1 model we
have the following median probabilities: TP = 99.5%, TN = 99.9%, FP = 62.4%
and FN = 99.8%. The last number must be taken with caution given that there
are only 79 observations in the FN category for M/M/1. For the M/M/1 FP
it is good to see that these were low probability classifications on average, per-
haps with more training and refinement these might be reduced. For the M/D/1
classification, probabilities mirror those of the M/M/1: TP=95.9%, TN=95.8%,
FP=50.9%, FN=85.3%. The same qualification applies to the M/D/1 trained
SVM for the FN probabilities as the FN category only contains 39 examples.
Calculating probabilities is expensive relative to simply training the SVM and
using it. It could however lead to a way to reduce the number of false posi-
tives. Placing a limit of p = .65 for positive classification reduces false positives
by an additional 95% for the micro-benchmark data. Post processing based on
probability has the benefit of moving this method from slightly conservative
to very conservative if high precision is required, albeit at a slight increase in
computational cost.

The full application results are consistent with those of the micro-benchmark
applications. Each application is run with a varying number of compute kernels
with its queue occupancies sampled as described in Sect. 2.1. Table 2 breaks
the application results into categories by model and application. Due to the
processor configuration and high data rates with this application all examples
are tested with a high server utilization. One trend that is not surprising is the
lack of true positives within Table 2. The application as designed has very high

Online Automated Reliability Classification of Queueing Models 91

throughput, consequently all servers are highly utilized. In these cases (ρ close
to 1), it is expected that neither of these models is usable. As is the case for the
micro-benchmark data, the overall correct classification rates are high for both
applications and models tested.

Table 2. % SVM classification rate for application data.

Application Model TP TN FP FN Correct classification

Matrix multiply M/M/1 17.1 % 75.2 % 5.4 % 2.4 % 92.3 %

Matrix multiply M/D/1 5.4 % 83.9 % 4.6 % 6.1 % 89.3 %

Rabin-Karp M/M/1 0.0 % 86.0 % 14.0 % 0.0 % 86.0 %

Rabin-Karp M/D/1 0.0 % 87.4 % 12.6 % 0.0 % 87.4 %

One potential pitfall of this method is the training process. What would hap-
pen if the model is trained with too few distributions and configurations. To test
this a set of the training data from a single distribution (the Exponential) is
labeled in order to train another SVM explicitly for the M/M/1 model. We then
apply this to two differing test sets. The first is data drawn from an exponen-
tial distribution and the second is data drawn from many distributions (training
data is excluded from all test sets). The resulting classification rates are shown in
Table 3. Two trends are apparent: specifically training with a single distribution
increases the accuracy when attempting to classify for only the distribution for
which the model was trained, and conversely lack of training diversity increases
the frequency of false positives when attempting use the SVM to classify mod-
els with distributional assumptions that it have not been trained for. Unlike
the false positives seen in prior sets, these are high confidence predictions that
post processing for classification probability will not significantly improve. One
thing is clear, training with as many service rate distributions as possible and
as many configurations tends to improve the generalizability of the SVM for our
application.

Table 3. % for SVM predictions with SVM trained only with servers having an expo-
nential distribution and tested as indicated.

Dist # obs Model TP TN FP FN Correct classification

Exp. 3249 M/M/1 53.0 % 31.2 % 15.7 % 0.1 % 84.2 %

Many 6297 M/M/1 55.8 % 0.0 % 44.2 % 0.0 % 55.8 %

Our method is currently only applicable to queues with sufficient steady state
behavior. To show what happens when a local steady state is not reached we
will use the Rabin-Karp string searching kernel and change the packet to be
extremely large proportionate to the size of the data set. This results in fewer

92 J.C. Beard et al.

data packets sent from the source kernel to the “rolling-hash” kernel and no
steady state. The resulting observed queue occupancies are much lower than
what is calculated by either queueing model. Applying an M/M/1 mean queue
occupancy model to this application will still result in a queue which is sized for
the mean potential occupancy. Table 4 shows the result of attempting to evaluate
the SVM against a queue that has not reached steady state. As a consequence
of the streaming streaming service rate approximation method, it is knowable
when the application has reached at least a local steady state and this condition
can generally be avoided.

Table 4. % for SVM evaluated against a Rabin-Karp string search algorithm that has
not reached steady state.

Model #obs TP TN FP FN Correct classification

M/M/1 120 21.6 % 41.5 % 20.7 % 16.2 % 63.1 %

M/D/1 120 11.1 % 44.4 % 44.4 % 0.0 % 55.5 %

4 Conclusions and Future Work

We have shown a proof of concept for using a SVM to classify a stochastic
queuing model’s reliability for a particular queue within a streaming application
that is usable online. This enables fast online modeling and re-optimization of
stream processing systems. Across multiple hardware types, operating systems,
and applications it has been shown to produce fairly good reliability estimates
for both the M/M/1 and M/D/1 stochastic queueing models.

This work chose to ignore the actual distribution of each compute kernel.
What would happen if we knew the underlying distribution of the service and
arrival process for each compute kernel in the system? Manually determining the
distributions of each compute kernel and retraining the SVM with this knowl-
edge for the M/M/1 model we arrive at a 96.6% correct classification rate. This
works just as well for the M/D/1 model where we observed 96.4% of the queues
being correctly classified as either “use” or “don’t use.” One obvious path for
future work is faster and lower overhead process distribution estimation. Math-
ematically this can be done with the method of moments, what is left is an
engineering challenge.

Empirical data could also be seen as a weakness of our approach since it
is obviously finite in its coverage of the combinatorial plethora of possible con-
figurations. We trained our SVM using as wide a variety of configurations as
possible, however the permutations of possible application configurations are
quite high. Other combinations of applications could provide slightly differing
results. Our choices of attributes is limited to what the hardware and operating
system could provide. Omniscient knowledge of the system would obviously be
helpful, it is possible that future platforms will provide more robust identifica-
tion and monitoring features which could improve the training and classification
process.

Online Automated Reliability Classification of Queueing Models 93

In conclusion we have demonstrated an automated way to classify the relia-
bility of stochastic queueing models for streaming systems. We have shown that
it can be done, and that in many cases it works quite well for the applications and
configurations tested. There are several avenues for future work to improve upon
what is demonstrated here ranging from improved instrumentation to improved
kernel functions.

References

1. Beard, J.C., Chamberlain, R.D.: Analysis of a simple approach to modeling per-
formance for streaming data applications. In: Proceedings of IEEE International
Symposium on Modelling, Analysis and Simulation of Computer and Telecommu-
nication Systems, August 2013, pp. 345–349 (2013)

2. Beard, J.C., Chamberlain, R.D.: Use of a levy distribution for modeling best case
execution time variation. In: Horváth, A., Wolter, K. (eds.) EPEW 2014. LNCS,
vol. 8721, pp. 74–88. Springer, Heidelberg (2014)

3. Beard, J.C., Chamberlain, R.D.: Run time approximation of non-blocking service
rates for streaming systems. arXiv preprint (2015). arXiv:1504.00591v2

4. Beard, J.C., Li, P., Chamberlain, R.D.: RaftLib: a C++ template library for high
performance stream parallel processing. In: Proceedings of 6th International Work-
shop on Programming Models and Applications for Multicores and Manycores,
February 2015, pp. 96–105 (2015)

5. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin
classifiers. In: Proceedings of 5th Workshop on Computational Learning Theory,
pp. 144–152 (1992)

6. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM
Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011)

7. Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.: Choosing multiple para-
meters for support vector machines. Mach. Learn. 46(1–3), 131–159 (2002)

8. Chen, Y.W., Lin, C.J.: Combining SVMs with various feature selection strategies.
In: Guyon, I., Nikravesh, M., Gunn, S., Zadeh, L.A. (eds.) Feature Extraction, pp.
315–324. Springer, Heidelberg (2006)

9. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995)

10. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and
Other Kernel-based Learning Methods. Cambridge University Press, Cambridge,
UK (2000)

11. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach.
Learn. Res. 3, 1157–1182 (2003)

12. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM
J. Res. Dev. 31(2), 249–260 (1987)

13. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Reg-
ularization, Optimization, and Beyond. MIT Press, Cambridge, MA (2002)

14. Tax, D.M., Duin, R.P.: Support vector data description. Mach. Learn. 54(1), 45–66
(2004)

15. Vapnik, V.N., Vapnik, V.: Statistical Learning Theory, vol. 2. Wiley, New York
(1998)

16. Wu, T.F., Lin, C.J., Weng, R.C.: Probability estimates for multi-class classification
by pairwise coupling. J. Mach. Learn. Res. 5, 975–1005 (2004)

http://arxiv.org/abs/1504.0059

	92330007.pdf
	Online Automated Reliability Classification of Queueing Models for Streaming Processing Using Support Vector Machines
	1 Introduction
	2 Methodology
	2.1 Data Collection and Hardware
	2.2 SVM and Training

	3 Results
	4 Conclusions and Future Work
	References

