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Abstract

Stream processing is a compute paradigm that has been around for decades, yet until re-
cently has failed to garner the same attention as other mainstream languages and libraries
(e.g., C++, OpenMP, MPI). Stream processing has great promise: the ability to safely exploit
extreme levels of parallelism to process huge volumes of streaming data. There have been many
implementations, both libraries and full languages. The full languages implicitly assume that
the streaming paradigm cannot be fully exploited in legacy languages, while library approaches
are often preferred for being integrable with the vast expanse of extant legacy code. Libraries,
however are often criticized for yielding to the shape of their respective languages. RaftLib
aims to fully exploit the stream processing paradigm, enabling a full spectrum of streaming
graph optimizations, while providing a platform for the exploration of integrability with legacy
C/C++ code. RaftLib is built as a C++ template library, enabling programmers to utilize the
robust C++ standard library, and other legacy code, along with RaftLib’s parallelization frame-
work. RaftLib supports several online optimization techniques: dynamic queue optimization,
automatic parallelization, and real-time low overhead performance monitoring.

Introduction and background

Decries touting the end of frequency scaling and the inevitability of a massively multi-core future
are found frequently in current literature [2I]. Equally prescient are the numerous papers with
potential solutions to programming multi-core architectures [31], [39]. One of the more promising
programming modalities to date, and one of the few to break out of the limiting fork-join model,
is a very old one: stream processing [I8]. The term “stream processing” is also synonymous with
data-flow programming and is a natural superset of the more limited map-reduce modality. Until
recently stream processing has garnered little attention. RaftLib aims to change that by enabling
performant and automatically tuned stream processing within the highly popular C++ language.

Stream processing is a compute paradigm that views an application as a set of compute kernels
(also sometimes termed “filters” [48]) connected by communication links that deliver streams of
data. Each compute kernel is typically programmed as a sequentially executing unit. Each stream
is abstracted as a first-in, first-out (FIFO) queue, whose exact allocation and construction is de-
pendent upon the link type (and largely transparent to the user). Sequential kernels are assembled
into applications that can execute in parallel. Figure [l is an example of a simple streaming sum
application, which takes in two streams of numbers, adds each pair, and then writes the result to
an outbound data stream.

A salient feature of streaming processing is the compartmentalization of state within each com-
pute kernel [I], which simplifies parallelization logic for the runtime [I9] as well as the programming
API (compared to standard parallelization methods [2]). Stream processing has two immediate
advantages: 1) it enables a programmer to think sequentially about individual pieces of a program
while composing a larger program that can be executed in parallel, 2) a streaming runtime can rea-
son about each kernel individually while optimizing globally [38]. Moreover, stream processing has
the fortunate side effect of encouraging developers to compartmentalize and separate programs into
logical partitions. Logical partitioning is also beneficial for the optimization and tuning process.

Despite the promising features of stream processing, there are hurdles that affect programmers’
decision to use the paradigm. First and foremost, before any technical issues are thought of, ease
of integration becomes a bottleneck. To make stream processing, and RaftLib successful, a path
must be cleared to use streaming within legacy code. Most streaming frameworks require that
applications be re-written or substantially modified to conform [34]. RaftLib skirts this hurdle by
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Figure 1: Simple streaming application example with four compute kernels of three distinct types.
From left to right: the two source kernels each provide a number stream (a and b), the sum kernel
adds pairs of numbers (¢ = a + b) and the last kernel prints the result (¢). Each kernel acts
independently, sharing data via communications streams depicted as arrows.

existing within one of the most popular languages, C++ (according to the TIOBE index [49], future
versions will include other language bindings to the library). A second hurdle, is the perceived
increase in communications cost. The issues leading to thread to thread communication (real or
false) are huge, and endemic to all types of thread parallel processing (the issues themselves are too
lengthy to discuss in detail, see relevant texts). Stream processing itself, offers several substantive
solutions given the directed graph (often acyclic) nature of the communications pattern, whereas
in a standard threaded application the ability to reason about these patterns is hampered by the
randomness of the access pattern itself. The FIFO pattern of most streaming systems can be
optimized using pre-fetch instructions found in many modern multi-core processors since the
next access is quite regular. Optimizing the communications pattern further involves minimizing
the path latency between compute kernels and maximizing the overall throughput through the
application. In general, this requires solving the graph partitioning problem which is NP-hard [22],
however several good heuristics exist.

This work introduces RaftLib [11,[4T], a C++ template library, which enables safe and fast stream
processing. By leveraging the power of C++ templates, RaftLib can be incorporated with a few
function calls and the linking of one additional library. RaftLib aims to transparently parallelize
an application in a way that is automatic to the programmer. RaftLib is an auto-tuned streaming
system. As such it must mitigate communications cost, adaptively schedule compute kernels, and
provide low overhead instrumentation to the runtime so that informed decisions can be made.
RaftLib minimizes the communications overhead in a multitude of ways, drawing on research from
past works [7, 8, 28, 29]. Machine learning techniques [6], [I0] are used to model buffers within
the streaming graph and select progressively more appropriate buffer sizes while the application
is executing. The framework incorporates low overhead instrumentation, which can be turned on
and off dynamically to monitor such metrics as queue occupancy, non-blocking service rate, and
utilization. All of these pieces put together make a highly usable and adaptive stream parallel
system, which is integrable with legacy code. In addition to being a performant and robust stream
processing platform for general or commercial usage, RaftLib is also intended to contribute as a
research platform. RaftLib’s modular construction enables empirical evaluation a myriad of issues
related to data-flow execution without extensive runtime modifications.



Related work

There are many streaming languages and runtime systems (both academic and commercial).
Streamlt [48] is a streaming language and compiler based on the synchronous dataflow model.
Storm [46] and Samza [43] are open-source streaming platforms that are focused on message-based
data processing. Google Cloud Dataflow [40)] is a proprietary stream processing system for Google’s
cloud. Many of the full languages and frameworks have until recently been suited only to “niche”
applications, often with steep learning curves. RaftLib’s advantage over them is that a C++ tem-
plate library is compiled as optimized machine code from the outset, easily integrable with legacy
code, and has more general usage. ScalaPipe [51] and StreamJIT [12] are two similar language ex-
tensions for streaming processing with a Scala frontend and a Java frontend, respectively. A similar
(but non-streaming) C++ parallelization template library is the open source Threading Building
Blocks (TBB) [42] library originally from Intel. RaftLib differs from the last framework in several
ways, first and foremost, is that it supports distributed and heterogeneous stream processing in
addition to single node (multi-core) parallelism.

There has been considerable work investigating the efficient execution of streaming applications,
both on traditional multi-cores and on heterogeneous compute platforms, from the early work on
dedicated data-flow engines [19], to the synchronous data-flow programming model [30]. Lancaster
et al. [29] have built low-impact performance monitors for streaming computations across FPGA
accelerators and multi-core devices. Padmanabhan et al. [38] have shown how to efficiently search
the design space given a model that connects tuning parameters to application performance. Beard
and Chamberlain [7] showed how to approximate throughput through a streaming application
efficiently using network flow models. RaftLib leverages and expands upon the above work, as it
seeks to efficiently execute streaming/data-flow applications.

In order to dynamically “tune” RaftLib, online instrumentation is required. Much previous
work has been done in this area as well, although not all specifically targeted towards streaming
systems. Tools such as DTrace [14], Pin [33], and even analysis tools such as Valgrind [37] can
provide certain levels of dynamic information on executing threads. Other, more modern per-
formance monitoring tools of note are Paradyn [35] and Scalasca [23]. These toolkits provide a
multitude of information for parallel systems, however not quite the same type of information that
our instrumentation provides. Many of these past works pioneered things like trace compression
for instrumentation, however we are interested in eliminating traces entirely. Using the data in real
time, then throwing it away reduces the communications overhead dramatically while mirroring
the streaming paradigm that it espouses. RaftLib’s instrumentation is geared specifically towards
stream processing, while leveraging non-streaming instrumentation methods developed by others
where possible.

Scheduling a streaming application is akin to partitioning a directed graph. Communication
between kernels via streams is accounted for by edge weights (weights potentially calculated us-
ing information from libraries like hwloc [I3]). More advanced partitioning algorithms can add
additional degrees of freedom in the form of matching kernels to specific processing resources.
Early work by Kernighan et al. [27] gave a heuristic to efficiently partition the graph into two
highly communicating partitions. Later work by Sanchis [44] extended partitioning to multiple
parts. Partitioning an application is but one part of scheduling. Once an application is set into
motion, classic scheduling algorithms like Round Robin, FIFO, and work-stealing can be used to
load-balance the application. RaftLib’s specific approaches are discussed in the following sections.



Design considerations

To be successful, stream processing systems must provide efficient ways of accessing data as the
program needs it, while minimizing communications cost, and maximizing the use of given compute
resources. The stream access pattern is often that of a sliding window [48], which is accommodated
efficiently in RaftLib through a peek_range function. Streaming systems, both long running and
otherwise, often must deal with behavior that differs from the steady state [§]. Non-steady state
behavior is often also observed with data-dependent behavior, resulting in very dynamic I/O
rates (behavior also observed in [48]). This dynamic behavior, either at startup or elsewhere
during execution, makes the analysis and optimization of streaming systems difficult, however not
impossible. RaftLib’s handling of dynamic behavior is demonstrated empirically through a text
search application. Many text search algorithms have the property, that while the input volume is
often fixed, the downstream data volume varies dramatically as the algorithm heuristically skips
over non-matching patterns. Compute kernel developers should focus on producing the most
efficient algorithm for an application, and not the burden of handling data movement or resource
allocation. RaftLib dynamically monitors the system to eliminate data movement and resource
allocation bottlenecks where possible, freeing the programmer to focus on application logic.

At one time it was thought that programmers were probably best at resource assignment [17],
whereas automated algorithms were often better at partitioning an application into compute ker-
nels (synonymous to the hardware-software co-design problem discussed in [4]). Anecdotal evidence
suggests that the opposite is often true. Programmers are typically very good at choosing algo-
rithms to implement within kernels, however they have either too little or too much information
to consider when deciding how to parallelize or where to place a computation. Understanding
this information is critical to understanding the secondary effects that each decision has for the
performance of an application. Within a streaming data-flow graph, it is often possible to replicate
kernels (executing them in parallel) to enhance performance without altering the application se-
mantics [32]. RaftLib exploits this ability to extract more pipeline and task parallelism at runtime
(dynamically) without further input from the programmer. The next few sections discuss how
these considerations are embodied within the programmer interface.

RaftLib description

The complexity of traditional parallel code (e.g., pthreads) decreases productivity, which can in-
crease development costs [24]. This complexity also limits the access to the performance benefits
of modern chip multi-processors to more experienced programmers. RaftLib aims to bring sim-
plicity to parallel programming so that everyone can experience the performance gains promised
by our multi-core future to novice programmers who would otherwise only write sequential code.
The streaming compute paradigm generally, and RaftLib specifically, enables the programmer to
compose sequential code (compute kernels) and execute not only in parallel but distributed parallel
(networked nodes) using the same source code.

RaftLib has a number of useful innovations as both a research platform and a programmer
productivity tool. As a research platform, it is first and foremost easily extensible; modularized so
that individual aspects can be explored without a full system re-write. It enables multiple modes
of exploration: 1) how to effectively integrate pipeline parallelism with standard threaded and/or
sequential code, 2) how to reduce monitoring overhead, 3) how best to algorithmically map compute
kernels to resources, 4) how to model streaming applications quickly so that results are relevant



during execution. It is also fully open source and publicly accessible [41]. As a productivity tool it
is easily integrable with legacy C++ code. It allows a programmer to parallelize code in both task
and pipelined fashions.

Before diving into RaftLib as a research platform, we introduce a bit more of streaming through
a concrete RaftLib example. The sum kernel from Figure[Ilis an example of a kernel written in a se-
quential manner (code shown in Figure[2)). It is authored by extending a base class: raft: :kernel.
Each kernel communicates with the outside world through communications “ports.” The base ker-
nel object defines input and output port class accessible objects. These are inherited by sub-classes
of raft: :kernel. Port container objects can contain any type of port. Each port itself is presented
as a FIFO interface. The constructor function of the sum kernel adds the ports. In this example,
two input ports are added of type T as well as an output port of the same type. Each port gets a
unique name which is used by the runtime and the programmer to address specific ports. The real
work of the kernel is performed in the run() function, which is called by the scheduler. The code
within this section can be thought of as a “main” function of the kernel. Input and output ports
can access data via a multitude of methods from within the run() function. Accessing a port is
safe, free from data race, and other issues that often plague traditional parallel code [5].

Figure B shows the full application topology from Figure Il assembled in code. Assembling the
topology can be thought of as connecting a series of actors. Each actor is sequential on its own,
but when combined in a graph can be executed in parallel. Once the kernel “actors” are assembled
into an application, the runtime starts to work parallelizing the application. Barrier operations
are also provided so that sequential operations can be performed within the main function that
interact with the parallel kernels, such as those described in Figure @l

template < typname T > class sum : public raft::kernel

{
public:
sum() : raft::kernel()
{
input. template addPort< T >( "input_a", "input_b" );
output.template addPort< T >( "sum" );
}
virtual raft::kstatus run()
{
T a,b;
input[ "input_a" ].pop( a );
input[ "input_b" ].pop( b );
auto c( output[ "sum" ].template allocate_s< T >() );
(¥c) = a + b;
return( raft::proceed );
}
};

Figure 2: A simple example of a sum kernel which takes two numbers in via ports input_a and
input._b, adds them, and outputs them via the sum stream. The allocate_s call returns an object
which releases the allocated memory to the downstream kernel with the call of its destructor as it
exits the stack frame.



const std::size_t count( 100000 );

using ex_t = std::int64_t;

using source = raft::random_variate< ex_t, raft::sequential >;
sum< ex_t > sum_kernel();

raft::map m;

m += source( 1, count ) >> sum_kernel[ "input_a" ];

m += source( 1, count ) >> sum_kernel[ "input_b" ];
m += sum_kernel[ "sum" ] >> print< ex_t, ’\n’ >();
m.exe();

Figure 3: Example of a streaming application map for a “sum” application (topology given in
Figure ). Two random number generators are instantiated inline with the mapping (labeled as
source), each of which sends a stream of numbers to the sum kernel, which then streams the sum
to a print kernel. The += operator overload adds kernels from the current line to the map. The
>> overload indicates a stream or link from one kernel to another. The kernel objects are created
inline above for conciseness, however, the raft: :kernel: :make<type> syntax is preferred as it
avoids additional copy overhead.

There are many factors that have led to the design of RaftLib. Chief amongst them is the desire
to have a fully open source framework to explore how best to integrate stream processing with
legacy code (in this case C/C++). In addition to being a productivity enhancing platform, it also
serves as a research platform for investigating optimized deployment and optimization of stream
processing systems. Scheduling, mapping, and queueing behavior are each important to efficient,
high-performance execution. RaftLib is intended to facilitate empirical investigation within each
of these areas. The following sections will discuss RaftLib’s programmer interface for authoring
applications, its usage as a research platform, followed by a concrete benchmark compared to other
parallelization frameworks.

Authoring streaming applications

RaftLib views each compute kernel as a black-box at the level of a port interface. Once ports
are defined, the only observability that the runtime has is the interaction of the algorithm im-
plementation inside the compute kernel with those ports, and the kernel’s interactions with the
hardware. A new compute kernel is defined by extending raft: :kernel as in Figure 21 Kernels
have access to add named ports, with which, the kernel can access data from incoming or write
to outgoing data “streams.” Once defined, programmers have multiple methods to access data
from each stream. The example in Figure 2] shows the simplest method (pop) to get data from
the input stream, which as the name suggests, pops an element from the head of the port’s stream
and returns it to the programmer by copy to the variables a and b. A reference to memory on
the output stream is returned by the allocate_s function (equivalently for fundamental types it
is just as efficient to incur a copy using the push operator). If the object is not plain old data,
RaftLib constructs the object in place on the output port. The return object from the allocate_s
call has associated signals accessible through the sig variable. There are multiple calls to perform
push, pop, and range style operations, each embodies some type of copy semantic (either zero copy
or single copy). All operators provide a means to send or receive synchronous signals that can
be used by the programmer, kernels will receive the signal at the same time the corresponding



data element is received (useful for things like end of file signals). Asynchronous signaling (i.e.,
immediately available to downstream kernels) is also available. Future implementations will utilize
the asynchronous signaling pathway for global exception handling.

Arranging compute kernels into an application is one of the core functionalities of a stream
processing system. RaftLib links compute kernels via an operator overload of the right shift
operator >> to mimic the pattern of the C++ stream operator. The >> operator has the effect of
assigning the output port of the compute kernel on the left hand side of the operator to the input
port of the compute kernel on the right hand side of the operator. Once kernels are linked, they
are added to a map object of type raft: :map to be executed via an overload of the += operator.
The return is an object containing iterators to the source and destination kernels added in the last
add increment operation. Figure [l shows our simple example application which takes two random
number generating kernels, adds pairs of the random numbers from the source kernels using the
sum kernel and prints them.

The graph itself is executed as the raft: :map exe () function is called, or if a barrier issued by
the programmer as shown in Figure @l Before executing, all ports are checked to ensure that they
are connected, if not an exception is thrown. While type checking is performed at the time of port
linking, allocation is performed lazily, right before actual execution. The runtime itself selects the
type of allocation depending on where each compute kernel is mapped, currently the choices are
one of (POSIX shared memory, heap allocated memory, or TCP link). Since mapping can place
kernels at any resource for which an implementation is available, the allocation types themselves
must follow. RaftLib supports type conversion through compatible types, as a consequence, the
runtime can select the narrowest convertible type. Compression is also possible as well, and future
work will investigate how best to incorporate link compression. Each stream is monitored via the
runtime and dynamically re-allocated as needed (this is beneficial for both performance, and device
alignment requirements).

Streaming applications are often ideally suited for long running, data intensive applications
such as big data processing or real-time data analytics. The conditions for these applications often
change during the execution of a single run. Algorithms frequently use different optimizations based
on differing inputs (e.g., sparse matrix vs. dense matrix multiply). The application can often benefit
from additional resources or differing algorithms within the application, to eliminate bottlenecks
as they emerge. RaftLib gives the user the ability to specify synonymous kernel groupings called
submaps, that the runtime can swap out to optimize the computation. These can be kernels
that are implemented for multiple hardware types, or can be differing algorithms. For instance, a
RaftLib version of the UNIX utility grep could be implemented with multiple search algorithms,
swapped out dynamically at runtime.

Integration with legacy C++ code is one of our goals. As such, it is imperative that RaftLib
work seamlessly with the C++ standard library functions. Figure F] shows how a C++ container
can be used directly as an input queue to a streaming graph. It can be accessed in parallel if
the out of order processing hint is given by the user. Just as easily, a single value could be read
in. Output integration is equally simple. Kernels are available to assign data streams to standard
library containers, or a reduction to a single value is also possible.

Copying of data is often an issue as well within stream processing systems. RaftLib provides
a for_each kernel (Figure (), which has behavior distinct from the write_each and read_each
kernels. The for_each takes a pointer value and uses its memory space directly as a queue for down-
stream compute kernels. This is essentially a zero copy and enabling behavior from a “streaming”
application similar to that of an OpenMP [I5] parallelized loop. Unlike the C++ standard library



using ex_t = std::uint32_t;

/**x data source & receiver container *x*/

std::vector< ex_t > v,o0;

ex_t i( 0 );

/%% £fill container *x/

auto func( [&] O{ return( i++ ); } );

while( i < 1000 ){ v.emplace_back( func() ); }

/** read from one kernel and write to another **/

auto readeach( read_each< ex_t >( v.begin(), v.end() ) );
auto writeeach( write_each< ex_t >( std::back_inserter( o ) ) );
raft::map m;

m += readeach >> writeeach;

m.barrier( writeeach );

/** data is now copied to ‘o’ **/

Figure 4: Syntax for reading and writing to C++ standard library containers from raft::kernel
objects. The read_each and write_each kernels are reading and writing on independent threads.

int *arr = { 0, ..., N };

int val = O;

raft::map m;

m += for_each< int >( arr, arr_length ) >> some_kernel< int >()
>> reduce< int, func /* reduct function */ >( val );

/** wait for map to finish executing **/

m.exe();

/** val now has the result *x*/

Figure 5: Example of the for_each kernel, which is similar to the C++ standard library for_each
function. The data from the given array is divided amongst the output queues using zero copy,
minimizing data extraneous data movement.

for_each, the RaftLib version provides an index to indicate position within the array for the start
position. This enables the compute kernel reading the array to calculate the position within it.
When this kernel is executed, it appears as a kernel only momentarily, essentially providing a data
source for the downstream compute kernels to read. Data from arrays and C++ containers can be
divided up dynamically to facilitate work stealing as a means of load balancing. Further reducing
copying is a size specific allocation mechanism that passes via reference versus copy when it is
more efficient to do so.

Code verbosity is often an issue. Readily available in C++ are examples of full class and template
decarations, when what is wanted is the ability to create a simple function without a full class dec-
laration. C++11 has met the demand for this functionality with lambda functions. RaftLib brings
lambda compute kernels, which give the user the ability to declare a fully functional, independent
kernel, while freeing her from the cruft that would normally accompany such a declaration. Fig-
ure [6] demonstrates the syntax for a single output random number generator. The closure type
of the lambda operator also allows for usage of the static keyword to maintain state within the
function [16]. These kernels can be duplicated and distributed, however they do induce one com-



plication if the user decides to capture external values by reference instead of by value. Undefined
behavior may result if the kernel is duplicated; especially across a network link (an issue to be
resolved in subsequent versions of RaftLib).

using ex_t = std::uint32_t;
/** instantiate lambda kernel as source **/
auto lambda_kernel(
lambdak< ex_t >( 0, 1, [1( Port &input, Port &output )
{
auto out( output[ "O0" ].allocate_s< ex_t >() );
(*out) = rand();
} /** end lambda kernel *x*/ )

);

raft::map m;

m += lambda_kernel >> print< ex_t, ‘\n’ >();
m.exe();

Figure 6: Syntax for lambda kernel. The user specifies port types as template parameters to the
kernel, in this example std: :uint32_t. If a single type is provided as a template parameter, then
all ports for this lambda kernel are assumed to have this type. If more than one template parameter
is used, then the number of types must match the number of ports given by the first and second
function parameters (input and output port count, respectively). The number of input ports is
zero and the number of output ports is one for this example. Ports are named sequentially starting
with zero. The third parameter is a C++11 lambda function, which is executed by the runtime.

RaftLib as a research platform

As aresearch platform, RaftLib is designed to enable the investigation of a number of questions that
impact the performance of streaming applications. In addition to the open question of how best to
blend parallel and sequential execution, RaftLib intends to be a platform for facilitating scheduling,
resource mapping, and buffer allocation (queueing) within streaming/data-flow systems. Other
research avenues abound, however, most of them stem from these core questions. Our focus here,
is not on solving each question but in facilitating further research.

Blending parallel code with sequential code, often results in a “spaghetti code” that is hard to
debug [20]. Streaming requires that each kernel maintain user accessible state within the compute
kernel, simplifying the reasoning process for the programmer. When building an application all that
is left is to string compute kernels together. The best way to manage the interface between code
executing in parallel via streams and procedural code remains an open question. Likewise, what
information can the programmer give the runtime to aid optimization decisions? Some applications
require data to be processed in order, others are okay with data that is processed out of order, yet
others can process the data out of order and re-order at some later time. RaftLib accommodates all
of the above paradigms. Currently RaftLib supports insertion of ordering information while linking
streams (see Figure [7), but more hints can easily be incorporated in future versions (especially if
user studies hint that they are useful).

Automatic parallelization of candidate kernels is currently accomplished by analyzing the graph
for segments that can be replicated preserving the application’s semantics. As part of the graph
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Figure 7: Example of a compute kernel mapping, with multiple single entry, single exit (SESE)
sections identified by the user through the raft: :order: :out enumerated value. These SESE out
of order sections can be parallelized as the runtime sees fit (e.g., “D” or “B — E”).

analysis process, single entry single exit (SESE) [26] segments are identified (with respect to user
indicated out of order links) and indexed as potential parallelization points (see Figure [7). Split
and reduce adapters are inserted where needed. Custom split/reduce objects can be created by
the user by extending the default split/reduce objects. Split data distribution can be done in
many ways, and the runtime attempts to select the best amongst round-robin and least-utilized
strategies (queue utilization used to direct data flow to less utilized servers). As with all of the
specific mechanisms that we will discuss, each of these approaches is designed to be easily swapped
out for alternatives, enabling empirical comparative study between approaches.

Given an application topology to execute, the kernels need to be assigned to specific compute
resources, and scheduled for execution. Scheduling of compute kernels within a streaming ap-
plication has been the subject of much research. Conceptually it has two parts, initial resource
assignment or “mapping” of kernels to compute resources and then scheduling the kernels to ac-
tually execute temporally. RaftLib currently supports multiple schedulers, including OS level
threads, and user space “fibers” or “threadlets” within each heavy-weight kernel thread using the
Qthreads lightweight thread library [50]. Threadlets give the runtime yet another degree of free-
dom in scheduling since within each kernel thread, the scheduler can partition the time quanta to
its threadlets in an application dependent manner. Different architecture and operating system
combinations prefer different types of threading models, so an open question is how best to switch
between these models on the same architecture. Even more complicated, some virtual memory
systems perform better with combinations of heavy-weight processes and threads. Asking for the
“best” combination is a very loaded question at best. For applications that require it, RaftLib
supports forcing a specific source for a particular compute kernel.

Fast partitioning itself is a vibrant area of research. RaftLib enables empirical evaluation of
the partitioning problem in isolation from the scheduling problem. The act of partitioning kernels
and threads of a streaming application to compute resources is nearly identical to the decades old
problem of partitioning and mapping a circuit. Partitioning for RaftLib means finding the best
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Figure 8: Buffer sizes for a matrix multiply application [6], shown for an individual queue (all
queues sized equally). The dots (middle data point) indicate the simple mean of each observation
(each observation is a summary of 1k executions). The red (top) and green (bottom) lines indicate
the 95" and 5" percentiles respectively. The execution time increases slowly with buffer sizes
> 8 MB, as well as becoming far more varied.

layout of compute kernels that minimizes the cost of communications between compute operations
while attempting to maximize the match of the hardware to the operations being performed within
each kernel. As mentioned before, the partitioning problem in general is NP-hard [22]. The default
partitioner uses a variant of k-way partitioning similar to the work by Sanchis [44]. Separating the
scheduling and partitioning enables researchers, and programmers to consider one problem (e.g.,
data locality in mapping) without necessarily having to dive into scheduling each kernel temporally
(although tuning both knobs could lead to better overall performance).

As illustrated in Figure 8 the allocated size of each queue of a streaming application can have
a significant impact on performance (the data from the figure is drawn from a matrix multiply ap-
plication, as in [6], performance based on overall execution time). One would assume perhaps that
simply selecting a very large buffer might be the best choice, however as shown the upper confi-
dence interval begins to increase after about eight megabytes. Instrumentation using the PAPT [36]
toolkit, shows that as the queue increases in size the L1,1.2 miss rates increase dramatically, as do
“soft” page-faults, and finally “hard” page-faults begin cropping up towards the extreme right side
of the queue sizing for the platform utilized (Note: it should be apparent that these trends hold in
general, the exact shape and limits are architecture dependent). RaftLib currently uses a variety
of approaches to optimize buffer allocation size ranging from branch and bound search to queueing
network models guided by machine learning (described in detail by [6]). The best solution to opti-
mizing buffer allocation and placement is still an open question. RaftLib modularizes the interface
to dynamically resize buffers, and buffer placement, so that new methods may be incorporated as
they are developed.

Considering the application as a whole for optimization is also possible for RaftLib (i.e., tuning
more than one knob across an entire application). Prior works by Beard and Chamberlain [7]
demonstrated the use of flow models to estimate the overall throughput of an application. The flow-
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model approximation procedure can be combined with well known optimization techniques such
as simulated annealing, analytic decomposition [38], or other heuristic techniques to continually
optimize long-running high throughput streaming applications. In practice, local (to each compute
kernel) search often works better due to reduced overall communications cost during dynamic
optimization [6]. Currently RaftLib uses a combination of flow model based optimization followed
by localized heuristic search. Modularity enables easy expansion as more efficient methods are
developed.

Performance monitoring is essential to the optimization and tuning of systems. In addition to
performance data pertinent to the tuning of standard applications (e.g., performance counters),
RaftLib provides instrumentation that is specifically useful to the tuning of an application struc-
tured as a streaming directed graph (abstract arrangement depicted in Figure [I0). Specifically
RaftLib can monitor statistics such as queue occupancy (mean, and full histogram), non-blocking
service rate (see Figure @ for example, online approximated rate and variance, as well as time aver-
aged), and overall throughput. The data collection process, and instrumentation itself is optimized
to reduce overhead and has been the subject of much research [6] [, 29]. As new instrumentation
methods are developed, they can be easily added to the RaftLib platform, improving the statistics
to be optimized over.
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Figure 9: Depiction of the ideal (drawn from empirical data) of the instrumentation’s ability to
estimate the service rate while the application is executing. Each dot represents the converged
service rate estimate (y-axis). The top and bottom dashed lines represent the first and second
phases as verified by manual measurement in isolation.

Non-blocking service rate, and distribution of that service rate are of particular interest when
using stochastic queueing models to optimize a streaming system. Stochastic models are desirable
because they are much faster than the alternatives, e.g., branch-and-bound search, which require
many memory reallocations. Both service rate and process distribution can be extremely difficult
to determine online without effecting the behavior of the application (i.e., degrading application
performance). In previous works, Beard and Chamberlain [9] show that a heuristic approach can
approximate the non-blocking service rate with relatively high accuracy and very low overhead.
RaftLib incorporates this approach. Figure [0 shows the instantaneous approximations of service
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rate using this method for a microbenchmark implemented with RaftLib. This method is critical
for dynamic optimization using stochastic models, and is available within RaftLib.

A B

N_7
Kernel © Kernel
Thread Thread
Monitor
Thread

OS Scheduler

processor || processor || processor
core core core

Figure 10: High level depiction of the abstraction layers coalesced around a simple streaming
application with two compute kernels. An independent monitor thread serves to instrument the
queue. Both the kernel threads and monitor threads are subject to the runtime and operating
system (OS) scheduler.

One often overlooked benefit of stream processing from the programmer perspective is that
data “streams” can be contiguous in memory. Within RaftLib, fundamental types are by default
contiguous, the exact memory alignment is selected by the runtime. Vectorized mathematical
operations are a stalwart feature of high performance computation. For machine architectures
that support SIMD instructions, RaftLib has specialized kernels for basic operations (more to be
added in the future) which support vectorized addition, subtraction, and multiplication on input
ports. This is important as the C++ compiler often cannot determine when a particular vector
operation could be safely inserted. The contiguous alignment of data on input ports, and indeed
the regular access pattern provided via a FIFO communications paradigm are perfect for cache
positioning hints provided by some computer architectures. FIFO patterns are also quite useful
for determining where to optimally place memory within NUMA systems as the reader and writer
are in defined locations.

The “share-nothing” mantra of stream processing might introduce extra overhead compared to
looser parallelization paradigms, however this overhead is paid for by ease of parallelization. Each
compute kernel can be easily duplicated on the same system, on different hardware across network
links or really any compute resource for which an implementation is available (or a translator
exists). As a research vehicle, RaftLib enables studies that explore how the communication and
resource placement can be optimized. As a productivity tool, we are more interested in how few
lines of code it takes to produce a result. Mentioned but not described has been the distributed
nature of RaftLib. The capability to use network connections for many distributed systems is
clunky at best. With RaftLib there is no difference between a distributed and a non-distributed
program from the perspective of the developer. A separate system called “oar” is a mesh of network
clients that continually feed system information to each other in order to facilitate distributed
RaftLib computation. This information is provided to RaftLib in order to continuously optimize
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and monitor Raft kernels executing on multiple systems. Future work will see its full integration,
as well as container integration facilitated through “oar.”

Benchmarking

Text search is used in a variety of applications. We will focus on the exact string matching problem
which has been studied extensively. The stalwart of string matching applications (both exact and
inexact) is the GNU version of the grep utility. It has been revised and optimized for 20+ years,
resulting in excellent single threaded exact string matching performance (~ 1.2 GB/s) on our test
machine (see Table [[). To parallelize GNU grep, the GNU Parallel [47] utility is used to spread
computation across one through 16 cores. Two differing text search algorithms will be tested
and parallelized with RaftLib. One will utilize the Aho-Corasick [3] string matching algorithm,
which is quite good for multiple string patterns. The other will use the Boyer-Moore-Horspool
algorithm [25], which is often much faster for single pattern matching. The realized application
topology for both string matching algorithms implemented with RaftLib, are conceptually similar
to Figure [[T], however the file read exists as an independent kernel only momentarily as a notional
data source since the runtime utilizes zero copy, and the file is directly read into the in-bound
queues of each match kernel.

Reduce )

Read File

Figure 11: String matching stream topology for both Boyer-Moore-Horspool and Aho-Corasick
algorithms. The first compute kernel (at left) reads the file and distributes the data. The second
kernel labeled Match uses one of the aforementioned algorithms to find string matches within the
streaming corpus. The matches are then streamed to the last kernel (at right) which combines
them into a single data structure.

Figure shows code necessary to generate the application topology used to express both
string matching algorithms using RaftLib. Not shown is the code to handle arguments, setup,
etc. Note that there is no special action required to parallelize the algorithm. The filereader
kernel takes the file name, it distributes the data from the file to each string matching kernel.
The programmer can express the algorithm without having to worry about parallelizing it. The
programmer simply focuses on the sequential algorithm. Traditional approaches to parallelization
require the programmer to have knowledge of locks, synchronization, and often cache protocols to
safely express a parallel algorithm. Even more exciting is that when using RaftLib, the same code
can be run on multi-cores in a distributed network without the programmer having to do anything
differently. The partitioner decides where to run which piece of the application and the online
scheduler can make decisions to tune performance dynamically.

For comparison we contrast the performance of our implementations of Aho-Corasick and Boyer-
Moore-Horspool against the GNU grep utility and a text matching application implemented using
the Boyer-Moore algorithm implemented in Scala running on the popular Apache Spark framework.
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using strsearch = raft::search< raft::ahocorasick >;

std::vector< hit_t > total_hits;

raft::map m;

/** capture an object with source and destination iterators *x*/

auto kernels( m += filereader( file, offset ) >> strsearch( search_term ) );

/** get begin and end iterator to destination **/

std::tie( BEGIN, END ) = kernels.getDst();

m += (*BEGIN).get() >> write_each< match_t >( std::back_inserter( total_hits ) );
/** wait for dst kernel to complete **/

m.exe();

Figure 12: Implementation of the string matching application topology using RaftLib. The actual
search kernel is instantiated by making a search kernel. The exact algorithm is chosen by specifying
the desired algorithm as a template parameter to select the correct template specialization.

We'll use a single hardware platform with multiple cores and a Linux operating system (see Table[T).

We use version 2.20 of the GNU grep utility. In order to parallelize GNU grep, the GNU
Parallel [47] application is used (version 2014.10.22), with the default settings. RaftLib (and
all other applications/benchmarks used) is compiled using GNU GCC 4.8 with compiler flags
“~0fast.” For this set of experiments, the maximum parallelism is capped to the number of cores
available on the target machine. A RAM disk is used to store the text corpus to ensure that disk
IO is not a limiting factor. The corpus to search is sourced from the post history of a popular
programming site [45] which is ~ 40 GB in size. The file is cut to 30 GB before searching. This
cut is simply to afford the string matching algorithms the luxury of having physical memory equal
to the entire corpus if required (although in practice none of the applications required near this
amount). All timing is performed using the GNU time utility (version 1.7) except the Spark
application, which uses its own timing utility.

Table 1: Summary of Benchmarking Hardware.

Processor ‘ Cores ‘ RAM ‘ OS Version
Intel Xeon E5-2650 | 16 | 64 GB | Linux 2.6.32

Figure [[3] shows the throughput (in GB/s) for all of the tested string matching applications,
varying the utilized cores from one through 16. A data point is shown for each repetition (10x)
for each benchmark, for each thread count. The performance of the GNU grep utility when single
threaded is quite impressive. It handily beats all the other algorithms for single core performance
(when not using GNU Parallel, as shown in the figure). Perfectly parallelized (assuming linear
speedup) the GNU grep application could be capable of ~ 16 GB/s. When parallelized with GNU
Parallel however, that is not the case.

The performance of Apache Spark when given multiple cores is quite good. The speed-up is
almost linear from a single core though 16 cores. The Aho-Corasick string matching algorithm
using RaftLib performs almost as well, topping out at ~ 1.5 GB/s to Apache Spark’s ~ 2.8 GB/s.
RaftLib has the ability to quickly swap out algorithms during execution, this was disabled for this
benchmark so we could more easily compare specific algorithms. Manually changing the algorithm
RaftLib used to Boyer-Moore-Horspool, the performance improved drastically. The speed-up from
one through 10 cores is now linear, with the 30 GB file searched in ~ 4.1 s which gives it close to
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Figure 13: This figure shows the performance of each string matching application in GB/s by
utilized cores. This is calculated using a 30 GB corpus searched on the hardware from Table[Ill The
green diamonds represent the GNU Parallel parallelized GNU grep. The red triangles represent
Apache Spark. The blue circles and gold squares represent the Aho-Corasick and Boyer-Moore-
Horspool text search algorithms, respectively, parallelized using RaftLib.

8 GB/s throughput.

Overall the performance of the RaftLib Aho-Corasick string matching algorithm is quite com-
parable to the one implemented using the popular Apache Spark framework. The Boyer-Moore-
Horspool however outperforms all the other algorithms tested. The change in performance when
swapping algorithms indicates that the algorithm itself (Aho-Corasick) was the bottleneck. Once
that bottleneck is removed we found that the memory system itself becomes the bottleneck. All in
all, the performance of RaftLib is quite good, comparable with (arguably better than) one of the
best current distributed processing frameworks (Apache Spark) and far better than the popular
command line parallelizing utility GNU Parallel for this application.

Conclusions & Future Work

RaftLib has many features that enable a user to integrate fast and safe streaming execution within
legacy C++ code. It provides interfaces similar to those found in the C++ standard library, which we
hope will enable users to quickly pick up how to use the library. New ways were also described to
specify compute kernels, such as the “lambda” kernels which eliminates much of the “boiler-plate”
code necessary to describe a full C++ class or template. The RaftLib framework enables massively
parallel execution, in a simple to use form. The same code that executes locally can execute
distributively with the integration of the “oar” framework. No programming changes are necessary.
This differs greatly from many current open source distributed programming frameworks.
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RaftLib is put forward as a tool to enable programmers to safely exploit parallelism, from within
a familiar environment. While doing that, it also lays a foundation for future research. How best
to integrate stream processing with sequential computation is still an open question. Pragma
methods such as OpenMP for loop parallelization work well for fork-join parallelism, however
they are far from ideal (in complexity, and extracting as much parallelism as is possible from an
application). RaftLib promises similar (or greater) levels of parallelism that are automatically
optimized by the runtime. The RaftLib framework provides a platform for safe and fast parallel
streaming execution within the C++ language. It serves as a productivity tool and a research vehicle
for exploring integration and optimization issues. Stream processing, and data-flow computing in
general, has been around as a well-known concept for over four decades [I8]. Despite this long
history, not a single streaming language has broken into the top ten programming languages (as
kept by TIOBE [49]). We hope that RaftLib serves as a catalyst to gain more than a niche user
base to the stream processing paradigm.
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