Eliminating Dark Bandwidth: a data-centric
view of scalable, efficient performance,
post-Moore

Jonathan C. Beard and Joshua Randall *

ARM Research - Austin, TX
{jonathan.beard, joshua.randall}@arm.com

Abstract. Most of computing research has focused on the computing
technologies themselves versus how full systems make use of them (e.g.,
memory fabric, interconnect, software, and compute elements combined).
Technologists have largely failed to look at the compute system as a
whole, instead optimizing subsystems mostly in isolation. The result, for
example, is that systems are built where applications can only ask for
a fixed multiple of data (e.g., 64-bytes from DRAM), even if what is
required is far less. This is efficient from a hardware interface perspec-
tive, however, it results in consuming valuable bandwidth that is never
utilized by the core; this hidden bandwidth is effectively dark to the sys-
tem. The causes of dark bandwidth are systemic, built into the very core
of our virtual memory abstractions and memory interfaces. Continued
focus on newer, revolutionary memory technologies to improve surface
performance characteristics without a systems focus on reducing data
movement will simply push this problem off onto future systems. This
paper examines the problem of dark bandwidth and offers a holistic ap-
proach to reduce overall data movement within future compute systems.

1 The Problem

Computation is typically not the bottleneck that it once was. Computing itself is
faster and less hungry (in terms of energy [7]) than the memory and interconnect
that supply the data for computation. Much computing research has focused on
providing efficient compute, resulting in the compute cores found in today’s CPU
sockets. The aforementioned compute devices perform very well for SPEC [4] and
LINPACK [3] workloads, however, the compute devices and accompanying sub-
systems optimized for these workloads do not necessarily perform well for the
applications executed by many HPC [2] and big data systems [12]. Two things are
clear: first, architecture researchers have produced a myriad of ways to compute
things efficiently, and second, research into ways to feed compute has not kept
up. The technical community has been working on a false thesis: that compute
systems efficiently utilize the bandwidth provided to the core by the memory
subsystem. Not only does research suggest that this is often not the case, it shows

* Partially supported by U.S. DoE FastForward-2 Contract - Subcontract No. B609229



II

that many applications make use of only a small fraction of the data moved to
the compute elements [10]. The trend towards heterogeneous accelerators only
serves to exacerbate the problem as bus length and buffering increase. Recovering
this lost bandwidth and reducing superfluous data movement gives the system
more usable bandwidth for real computing. It is not just the size and speed of
the memory technology that matters, it is how you use it that will enable future
systems to utilize what is effectively dark or hidden memory bandwidth.

The type of compute elements today range from simple in-order cores to mas-
sively complex out-of-order ones. The compute elements within these go from
small arithmetic units to heavyweight vector engines. General purpose CPUs
are hobbled by the very fact that they must be general. For many applications
the general purpose has given way to better adapted hardware [9]. The general
purpose graphics processing unit (GPGPU) revolution was launched by the real-
ization that vector units with many threads could operate on specific workloads
very efficiently without the constraints of things like having to run an operating
system. Many other accelerators have since become mainstream, including FP-
GAs. Data must still be delivered to the accelerator, just as it must be delivered
to the CPU core itself. The main difference between the CPU, and accelera-
tors like the GPU is that memory hand-off must be coordinated by an external
agent: the CPU. No matter how efficient engineers and researchers make cores
and accelerators, the model of paging in data from memory one DDR burst at
a time [5], all coordinated by the general purpose core, limits the efficiency and
scalability of all future systems intended for more sparse workloads.

Cache line utilization is one way of measuring the bandwidth utilization of a
DRAM burst given that the burst and cache line granularity typically align (e.g.,
64-bytes). On average, when measured with profiling tools (e.g., DynamoRio),
HPC application utilization for the L1-D cache is between 20-80%, with spikes
for kernels like DGEMM up to 100% during “hot” loops. The numbers for the
L2 cache shift only slightly, with kernels like DGEMM exhibiting high reuse at
this level as well. The worst offenders are applications like GUPS whose L1-
D utilization stays at around 20%. Less bandwidth intensive applications like
LULESH also have room for improvement as elements from a lattice must be
gathered to contiguous memory and then scattered again. Simply increasing the
available bandwidth, as many memory and interconnect focused technologies do,
does nothing to address the critical problem of wasted data movement.

Even when a cache line is fully utilized, often it is quickly evicted and never
used again because of high reuse distance. Reuse distance is the amount of
relative time or number of bytes, depending on the metric used, between one use
of a data element and another. Even when cached data are fully utilized, often
the reuse distance is high. Most applications have varying phases where reuse can
range from immediate (zero bytes between subsequent accesses), to kilobytes, all
the way to infinity (perfectly streaming accesses). To make the most out of a
modern hierarchy, it is critical that systems designers find a way to maximize
the physical proximity of highly reused dense data to the best compute element
possible, while providing the best bandwidth possible for the streaming data



11T

(high reuse distance). A cache hierarchy, which on a per component basis is
generally static in size, is a poor structure for workloads where reuse distance
scales with the data set size.

Sparse applications have both low utilization and high reuse distances. Ir-
regular applications often share the aforementioned properties, but they also
typically have unpredictable data access patterns (i.e., they are data depen-
dent). Sparse and irregular applications are found both in HPC (e.g., lattice
and geometric multigrid calculations) and big data analytics (e.g., MapReduce,
databases). These applications often explore only a few data points within a data
region (e.g., 4KB page). In current systems, this often results in a page-sized
region being loaded from network or nonvolatile memory into DRAM (through
the main processor core) and then back to the core for computation. This results
in a lot of data movement (e.g., from source, to CPU, to DRAM, and then back
to core). This is very inefficient, however, the problem is worse. Performance-
enhancing technology such as the hardware prefetch unit, as well as the DDR
burst length itself, often inadvertently evict useful lines from the cache hierarchy,
while allowing useless data to hitchhike into the cache, wasting scarce bandwidth.
For off-chip accelerators (e.g., GPGPUs), additional hand-off and coordination
of virtual pages must also be managed, adding even more overhead.

Memory technologies are proverbially five years out; that is they often per-
petually remain science projects that fail to scale to production. Even when tech-
nologies do make it to production, more revolutionary technologies have a hard
time competing with incremental improvements on a cost and performance basis.
The time necessary to develop revolutionary technologies (e.g., MRAM) often
makes possible for incremental improvements in legacy technologies to outpace
the improvements that would come through adopting a newer, more revolution-
ary one. Even when new technologies come to market (dark bandwidth), they
will inherit systemic flaws that result in wasted data movement. Ignoring the
system deficiencies described in this section when bringing new technologies to
market, only means pushing the data movement problem into the future rather
than solving it.

2 Solutions

Data movement dominates computation at scale [1]. There are a few options
to increase bandwidth utilization and reduce data movement. Some researchers
suggest that byte-level addressing is the key to improving bandwidth utiliza-
tion. While true, when faced with the harsh reality of engineering a system with
addressing commands that equal the size of the data requested, at face value,
this idea seems quite impractical. A creative solution that arrives at the same
effect is in-/near-memory rearrangement [8], which effectively delivers byte-level
addressing through bulk data requests. Processing in- or near-memory (PINM)
is another solution quickly gaining traction with both academic and commercial
researchers. The idea, however promising, is faced with many hurdles. Increased
proximity of memory cells and compute elements raise the risk of heat-induced



v

memory leakage, decreasing efficiency. In modern systems, the virtual memory
system is also an enemy of those wishing to reduce data movement. What en-
gineers developed to protect systems, improve multiplexing, and ease system
programmability, now hobbles scalability and performance.

2.1 Chopping Down Sparse Data

The efficiency of large, heavyweight compute units is extremely hard to beat.
A wide vector unit can churn through packed-data computation extremely well.
The issue with these is that data often does not come packed, so programmers
often use gather-scatter instructions. These are used to pack data from multiple
locations into a single vector register and then return it back to non-contiguous
memory. In practice, gather-scatter instructions are not as efficient as they could
be. The cache lines are still underutilized (only the register is packed) leading to
corresponding unused memory bandwidth (see Figure 1). The only way to reduce
the data movement for applications in need of heavyweight compute (e.g., vector
units) with middle (8KB) to high (> 128KB) reuse distances and potentially low
cache line utilization is through in-/near-memory or in-storage rearrangement
(there are better techniques for workloads with less compute intensity).

cache lines

=
/ )/ DRAM
core A /
| wmm R V€] 2 Qm
T
Js.
gather # Page
|

A) No reduction in data movement

I B) Lots of data movement reduction I

L1 L2
core @ H ¢ m
A

Page - S

Fig. 1. Image A above shows the data movement pattern for a traditional gather
instruction as implemented on many architectures. Cache lines are gathered into the
cache hierarchy one-by-one, then offsets are accessed to pack data into a vector register.
Image B shows the potential for in- or near-memory rearrangement, which requires
relatively simple logic near memory to compact data from S before it reaches the
cache hierarchy S".



Random Gather Comparison
(1GB Dataset)

In—memory In—core

—13 N w3
~20 ‘ ‘ O L2
30 | H LD

-40
-50

% Cache Miss Relative
to no Gather/Scatter

Fig. 2. Benchmark of a random gather across a 1 GB data set using a leading vector
architecture’s gather instruction to compare to an emulated near-memory rearrange-
ment. Near-memory rearrangement results in a ~50% reduction in L1-D misses and
a ~30% reduction in LLC misses compared to a standard gather instruction. Both
results are normalized to the same code run without a gather instruction. In all cases,
the hardware and software stacks are kept the same.

2.2 Processing In- or Near-Memory

For applications with middle to high reuse distances and/or low cache line uti-
lization that can make do with less power hungry compute, PINM is a good
option. As an example, if an architecture has a load width of 128b/cycle, the
reuse distance of 8KB gives 64-cycles to compute in cache. At a distance of 64KB
this grows to 512-cycles, which is more than enough for in-cache processing (as-
suming a reasonable access time for caches). Many big data applications fall into
this category, as do database and string processing (e.g., genomics) workloads.
The options for compute elements within a PINM system range from simple
fixed-function state machines to putting heavyweight cores in- or near-memory.
The line blurs between what is PINM and what is simply a processor with a
shorter bus or giant cache made of high bandwidth memory. The definition that
best fits is a processor closer to memory that is supplemental to a general purpose
processing core (essentially an accelerator for sparse and irregular applications).
There are two possible locations for PINM, on- or off-chip. The on-chip devices
can be split into in-cache or in-system cache. The main advantage for on-chip
is the potential availability of low-latency links to retrieve virtual to physical
address translations. Off-chip devices fall into multiple categories as well, in-
component devices (e.g., SSD), in-controller (e.g., external memory controller,
interconnect), and in-memory devices. A primary disadvantage for off-chip de-
vices: high latency off-chip virtual memory translation.

Functional considerations for on-chip PINM devices are many, especially
when coordinated from a general purpose core. Modern processors require things
like out-of-order issue, exception handling, and for PINM outside of the coher-
ence network (i.e., either on-chip or off-chip RAM) careful handling of virtual-to-
physical address translation is required. Building a PINM in-cache is relatively
simple, coordinating it as a system is quite difficult. With current virtual mem-
ory systems, off-chip PINM is hobbled by the fact that the software must be
coordinated to know where the memory is located. This leads to several issues
that must be considered outside of those listed for on-chip PINM. PINM with



VI

current virtual memory systems either must rely on the software to place pages
statically in memory for the PINM device, restrict operation to huge pages, or
rely on an input/output memory management unit (IOMMU). The IOMMU
translation bottlenecks for GPGPU found in literature largely apply to PINM
(e.g., 20x higher translation cost, 1-20 MPKI [6, 11, 12]), with some exceptions.
For PINM, the ideal processor technology is not the heavyweight GPGPU type
core, but many small simple cores. The access patterns are also different, instead
of lock-step data parallelism, PINM targets very sparse memory access patterns.
The usual solution of increasing page size (successful for GPGPU) typically fails
for PINM.

HBM DRAM

core Q L1 @ L2 NV
PINM

PINM | — B
\ in-memory Page (SB

task (multiple ops)

B
|% Large data movement decrease %'

Fig. 3. PINM involves sending instructions closer to where the data rests within the
memory device versus bringing the data to the core. Lightweight PINM cores could
exist at multiple places in the memory hierarchy.

The simplest embodiment of PINM hands a single page at a time to each in-
/near-memory processor (to reduce logic needed to handle contention), the use of
huge pages in this scenario limits the number of cores that can be utilized without
extra synchronization hardware, limiting the overall parallelism; ideally a smaller
page size (e.g., 4 KB) would be used. Figure 4 demonstrates the inefficiencies of
virtual memory for a PINM system using the preferred 4 KB page size. Removing
the bottleneck of virtual memory would enable PINM technology to be more
efficient. Without fixing the memory system, PINM technology will be forced
to limit solutions to a select range of applications (e.g., in-memory databases)
or force adoption of more restricted programming models (e.g., PGAS) to work
around the fundamental limitations of page-based virtual memory. The same
solution will likely enable faster, simpler, and easier implementation of a unified
memory space for accelerators (including ease of handling pages in virtualized
GPGPU clusters). The time is ripe for a rethink of virtual memory and a rethink
for the relationship of the operating system, memory system, and runtime.

3 A Common Problem: Translation

The biggest hurdle to implementing the data movement reduction technologies
described in the last section is page-based translation. The problem with page-



VII

based translation is, first and foremost, the fixed-size pages themselves (pages
limit addressability and parallelism for tightly coupled accelerators and PINM
devices). Secondly, the reliance on page table caches for non-general purpose
compute elements becomes a bottleneck for all out-of-core accelerators [11]. As
architectures vie for more efficiency, the trend of late is towards specialized accel-
erators. In order to maximize the utility of accelerators, something must change
in the virtual memory system. Memory fabrics cannot continue to ignore the
software co-design to optimize the extension of the virtual memory abstraction
to all compute elements. Satisfactory solutions that would enable page-based
virtual memory to extend outside of general purpose cores (e.g., accelerators) in
a low overhead manner are yet to be found. The current state of the art results
in ~1.5-cycles of translation overhead per cycle of compute for a PINM sparse
compute accelerator device (see Figure 4). Nothing short of a rethink of the
virtual memory system will solve the problem.

v v
A v
15 ® CoMD A SNAP
ol . daxpy vV streams
33 dgemm ® XSBench
g5 10¢ ® A
I A gups
5| g ®
el = v hpgmg
05¢ Q
% $ é ) lulesh
- ¢ PY L] o mcb
ool s 8 & L I . RSBench
0 5 10 15 enc
PINM Threads

Fig. 4. Projected cycles used on translation versus execution, estimated by measuring
actual application miss rates on a leading accelerator architecture (64-entry L1 TLB),
assuming a 1GHz clocked multi-core main processor, an average of 582-cycles per
IOMMU page walk (times above estimated assuming a 60% IOMMU hit rate), PCle
ATS protocol, and 50-cycles PCle latency round trip (optimistic). No latency is taken
into account for page source (e.g., disk, RDMA), nor DRAM page open, making this
graph optimistic. Execution time does not include time spent stalled.

Reliance on a set of fixed-size pages (even with an assortment of sizes) has
the unfortunate characteristic that each page entry represents only N-bytes of
memory and there can only be a set number of entries in the physical hardware.
This results in the reach (range of addresses addressable by the translation look-
aside buffer, TLB) being fixed by the number of entries in the TLB multiplied
by the size of the largest page size supported. TLB size has grown (as well as
number of entries and associativity), however, even the largest of TLBs can only
address a small fraction of the available address space (e.g., 1TB). What happens
when the memory space is a petabyte, then exabyte? It should be apparent that
the lack of TLB reach is quickly becoming an issue for general purpose cores in



VIII

addition to out-of-core devices. Any rethink of page-based virtual memory will
clearly pay dividends for all compute elements, not just accelerators.

4 Conclusion: It’s the System

Pulling the memory hierarchy into the compute system as a first class citizen, not
only to feed cores but as an active participant, will enable extracting more per-
formance from less revolutionary memory and compute technologies. Reducing
overall system data movement will likely net system designers far more over the
next decade than any revolutionary technology changes. Enabling small amounts
of computation in- or near-memory along with fixing the virtual memory system
could enable future systems to recapture dark bandwidth. Doing all of this, while
not breaking all extant software is a huge, but not insurmountable, challenge.
It’s not just the memory technology or compute alone that should be the focus,
it’s how the compute system as a whole uses it.

References

[1] Data Movement Dominates. https://goo.gl/rro35D, accessed March 2017

[2] Dongarra, J., Heroux, M.A.: Toward a new metric for ranking high performance
computing systems. Sandia Report, SAND2013-4744 312 (2013)

[3] Dongarra, J.J., Moler, C.B., Bunch, J.R., Stewart, G.W.: LINPACK users’ guide.
SIAM (1979)

[4] Henning, J.L.: Spec cpu2006 benchmark descriptions. ACM SIGARCH Computer
Architecture News 34(4), 1-17 (2006)

[5] Jacob, B., Ng, S., Wang, D.: Memory systems: cache, DRAM, disk. Morgan Kauf-
mann (2010)

[6] Karakostas, V., Gandhi, J., Cristal, A., Hill, M.D., McKinley, K.S., Nemirovsky,
M., Swift, M.M., Unsal, O.S.: Energy-efficient address translation. In: High Per-
formance Computer Architecture (HPCA), 2016 IEEE International Symposium
on. pp. 631-643. IEEE (2016)

[7] Kestor, G., Gioiosa, R., Kerbyson, D.J., Hoisie, A.: Quantifying the energy cost of
data movement in scientific applications. In: 2013 IEEE international symposium
on workload characterization (IISWC) (2013)

[8] Lloyd, S., Gokhale, M.: In-memory data rearrangement for irregular, data-
intensive computing. Computer (8), 18-25 (2015)

[9] Markov, I.L.: Limits on fundamental limits to computation. Nature 512(7513),
147-154 (2014)

[10] Srinivasan, J.R.: Improving cache utilisation. Tech. rep., University of Cambridge,
Computer Laboratory (2011)

[11] Vesely, J., Basu, A., Oskin, M., Loh, G.H., Bhattacharjee, A.: Observations and
opportunities in architecting shared virtual memory for heterogeneous systems.
In: Performance Analysis of Systems and Software (ISPASS), 2016 IEEE Interna-
tional Symposium on. pp. 161-171. IEEE (2016)

[12] Wang, L., Zhan, J., Luo, C., Zhu, Y., Yang, Q., He, Y., Gao, W., Jia, Z., Shi,
Y., Zhang, S., et al.: Bigdatabench: A big data benchmark suite from internet
services. In: High Performance Computer Architecture (HPCA), 2014 IEEE 20th
International Symposium on. pp. 488-499. IEEE (2014)



