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Abstract—The problem of efficiently feeding processing ele-
ments and finding ways to reduce data movement is pervasive in
computing. Efficient modeling of both temporal and spatial local-
ity of memory references is invaluable in identifying superfluous
data movement in a given application.

To this end, we present a new way to infer both spatial
and temporal locality using reuse distance analysis. This is
accomplished by performing reuse distance analysis at different
data block granularities: specifically, 64B, 4KiB, and 2MiB sizes.
This process of simultaneously observing reuse distance with
multiple granularities is called multi-spectral reuse distance. This
approach allows for a qualitative analysis of spatial locality,
through observing the shifting of mass in an application’s reuse
signature at different granularities. Furthermore, the shift of
mass is empirically measured by calculating the Earth Mover’s
Distance between reuse signatures of an application.

From the characterization, it is possible to determine how
spatially dense the memory references of an application are based
on the degree to which the mass has shifted (or not shifted)
and how close (or far) the Earth Mover’s Distance is to zero
as the data block granularity is increased. It is also possible
to determine an appropriate page size from this information,
and whether or not a given page is being fully utilized. From
the applications profiled, it is observed that not all applications
will benefit from having a larger page size. Additionally, larger
data block granularities subsuming smaller ones suggest that
larger pages will allow for more spatial locality exploitation, but
examining the memory footprint will show whether those larger
pages are fully utilized or not.

I. INTRODUCTION

At present, data movement is far more expensive than

compute (i.e., an off-chip DRAM access will use 1000× more

energy, comparatively, than the 64-bit floating-point multiply-

add that results from it when calculated using a 28nm process

node [8], [16]). It follows that superfluous data movement

should be reduced as much as possible as a means to improve

system efficiency. Efficiently modeling the spatial and tem-

poral locality of data has a direct impact on multiple facets

of the data movement problem [18]. This includes optimal

page sizing, data to memory technology placement, data page

prefetching (related to placement) [27], [36], and when (and

where) to use various forms of data gather/scatter. This work

makes two primary contributions. First we demonstrate how
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to use a well known statistical technique (Earth Mover’s

Distance) in a novel way to inform the relationship between

spatial and temporal locality. Second, we show empirically

the application of our method using a set of industry standard

benchmarks and how multi-spectral reuse distance analysis can

inform various facets of memory management.

Page sizing is often not associated with changes in data

movement, though it should be. Whether using a disk con-

troller or the main central processing unit, when data is

paged-out and new data paged-in, all the contents of that

page must be written to persistent storage if modified. That

write-back and subsequent reloading with a new 4KiB page

requires 128-256b coherence bus transactions for just one

direction of movement (e.g., controller to physical DRAM).

If that page isn’t fully utilized once it is moved, then much

of that data movement is likely wasted. Consider the case

when a 2MiB page is loaded to DRAM but only half of

the page is used before that physical memory is needed for

another application. We will potentially have wasted 215 bus

transactions for loading the page, and another 215 transactions

(only considering wastage for the portion of the page that was

not used, the full page would take 216 bus transactions with a

256b bus). Even when the core is not actively participating in

the transfer, cache line tag RAMs will be accessed, as will

snoop/directory filters within the cache coherence network.

Every access for superfluous data movement is an access taken

away from useful data movement. Choosing the correct size

of page is also important for copy-on-write memory systems

(which most modern operating systems implement). If super

(huge) pages are chosen where page utilization is low, much

additional data must be copied. For example, any time a write

to a child page (the virtual page pointing to a parent original

page) occurs, the entire contents of that page must be copied.

Simply choosing a smaller page would have been desirable.

The model described in this paper could be used for online

prediction for page size based on actual spatial/temporal reuse

patterns, potentially with relatively low overhead.

Modern computer systems often integrate multiple memory

technologies into a computer system. As an example, some

GPGPU devices incorporate static random-access memory

(SRAM), high bandwidth memory (HBM), and nonvolatile

memory (NVM) all within the same device, and often byte



addressable. The decision on where to place data within

this physical memory space has direct system performance

implications. Placing data on an HBM device provides very

high bandwidth but intermediate latency, whereas placing data

in an SRAM scratchpad could provide very low latency and

high bandwidth at the expense of lower capacities (relative

to other options such as NVM). Current industry practice for

placing data on these memories is either to do it manually (user

driven) or to treat the memory as a cache with some suitable

replacement policy. The model described in this paper could be

used to determine dynamically what granularity page should

be used and if a predictor would be effective. Our model could

do this by simplifying complex patterns, which is a side effect

of the multi-spectral reuse distance approach (i.e., patterns

often are easier to determine at a larger granularity versus

small). Evidence presented within this work suggests that by

using larger pages, the page placement prediction policy would

be easier to derive due to the coarser granularity. Our model

could be used as a means to decide between a caching policy

or a prediction counter policy that would attempt to proactively

fetch the next page.

Tightly related to data and memory technology placement is

the choice of where to gather or scatter (and also compress and

decompress) data. Currently the best way to decide is through

extensive offline profiling on the target system. Evidence

suggests that future systems will be equipped with DMA-like

gather/scatter engines at multiple locations within the memory

hierarchy [1], [22]. Just like the data placement decision and

page sizing decisions previously mentioned, gathering data at

the network interface controller (NIC) or NVM versus bringing

all the data into the coherence network can pay dividends

for efficiency [11]. If a system is equipped with multiple

gather/scatter units, how is the system to choose between

gathering at one location or another? If a reorganization

function exists (provided by either the user or compiler), then

using the spatial and temporal locality data provided through

our described model a system could decide based on a heuristic

if less data movement and tighter spatial locality could be

gleaned from data reorganization.

II. RELATED WORK

Characterization of both temporal and spatial locality has a

long history [10]. Metrics from the literature include [7], [13],

[17], [19], [32], [33], [34], [37].

Reuse distance–defined initially by Mattson et al. [23] as

stack distance–is frequently used as a measure of temporal

locality. For example, Weinberg et al. [38] define a temporal

locality measure that is the area under the reuse distance

curve, with the reuse distance expressed using a log scale. This

formulation has been used for the characterization of various

benchmarks [5], [6], [26], [29], [35]. Reuse distance has been

compared with spatial locality by previous authors [12], [39].

All of these authors owe the gestalt of their works to the

observations of Spirn and Denning [34] who made some of

the earliest observations of program locality. Gu et al. [12]

observed reuse distance to be a measure of both temporal

and spatial locality. They used reuse distance as a measure

of spatial locality as we do, by altering the granularity of

the data block size. They reason that varying the block size

leaves temporal locality unchanged, so distinctions between

two block sizes are due to spatial locality. These authors

also propose a spatial locality score SLQ. Gupta et al. [13]

propose a statistical model based on the idea of “near-future

windows sizes.” In contrast to this work, our methodology

uses Earth Mover’s Distance (EMD) [30] to provide a metric

that gauges spatial locality when moving histograms of multi-

spectral temporal reuse data.

While the approach we espouse is driven by empirical

data, others have taken a more theoretical approach, using

the cache oblivious model to determine data locality [31]

and graph theoretic approaches (interval graphs) [3]. These

methods are complex, requiring (in the case of the graph

approach of [3]) the search for multiple cliques over the entire

stream of allocations and accesses of a program. Where these

methods are intended to inform cache behavior, our methods

are intended to be more general. We intend to be approximate;

we feel that for many cases in real world decisions, a good

fast answer is far better than a too-late exact answer.

Within this work, we make the claim that prefetching of

data is a difficult problem. Mittal [24] provides an excellent

overview of contemporary prefetching methods and results.

Plainly speaking, the dynamic random access main memory

(DRAM) of modern computers is yet another level of cache,

managed by the operating system. This DRAM can be com-

posed of many different types of memory technology, as well

as having NUMA [20] characteristics. The authors make no

claims of use directly as a model for prefetching, however, the

proposed modeling methodology could be used to determine

the optimal granularity of prefetch (in the case of memory

systems) and also on the selection of cost function to drive

the control process. Granularity of statistical prediction has

a well known relationship with a prediction’s accuracy [25]

(e.g., very detailed predictions with more degrees of freedom

often have more uncertainty) and we make no claim to this

relationship, but we do hope that this method provides a means

to more optimally use coarse grained prediction effectively

(through better page sizing). The problem of data placement

within a tiered and NUMA system is by no means new, and

heavily related to data to disk optimization problems solved

as examples in [21].

III. METHODS

A. Benchmark Applications

The applications used in this work are a subset of the

SPEC2006 benchmark suite [14]. However, profiling the en-

tirety of a given benchmark proved too prohibitive. Generating

reuse data for any application compiled with the -size=train

option (i.e., the largest input size option) took several hours in

the worst case. In the case of the 433.milc benchmark compiled

with the -size=ref option, the instrumented application took

26 days to complete. Thus, functions within this subset that



Fig. 1. (a) Reference trace. (b) Reuse distance stack. (c) Reuse distance
histogram.

have been shown to take a large share of the total execu-

tion time [28] were characterized. Additionally, the MEGA-

STREAM benchmark [9], is used to demonstrate behavior of

codes with very high memory access to computation ratios

(itself derived from stencil computations).

Trying to save the traces of instrumented functions of the

applications for post-processing also proved to be problematic

because traces easily exceeded terabytes in size. Sampling

reuse distances was also a possibility, but we did not want

to risk aliasing a reuse distance pattern or miss unique cache

line accesses. Thus, the characterization has been limited to 1

trillion references while the target function was executing.

B. Reuse Distance

In a trace of memory references, given a unique reference,

its reuse distance is the number of unique references that

are made before it is referenced again. Traditionally, memory

references take on a cache line (64B) granularity. To calculate

reuse distances for an application, a stack is employed to

maintain ordering of the memory references as they are en-

countered. The most recently used memory reference is always

at the head of the stack. There are two main operations of the

reuse distance stack: encountering either new or previously

seen memory references. A memory reference is added to

the stack if it has not been seen during execution. When a

memory reference has been encountered before, its index in

the stack is isolated and the distance between its index and

the head of the stack becomes the reuse distance. This reuse

distance is the index into a histogram that keeps track of how

many elements have a particular reuse distance. Reuse distance

analysis was performed by dynamically instrumenting loads

and stores using the drcachesim tool of DynamoRIO [4].

An example of calculating reuse distance is shown in

Figure 1. The end result of the reuse distance analysis, i.e.,

the reuse distance stack in Figure 1(b) and histogram in

Figure 1(c), is shown after processing the reference trace

in Figure 1(a). Exploring the memory reference named a, it

contributes to the reuse distance histogram as follows: the first

time it is seen, it is added to the stack. The second time it is

encountered, its reuse distance is calculated to be 2, and the

reuse distance is 0 when it seen for the third time.

A reuse distance signature is the probability mass function

(PMF) for the reuse distances of a given application across a

range of bins. In this work, the bins represent groupings of

reuse distances on a logarithmic scale.

Reuse distance analysis has traditionally been performed

at cache line granularities, i.e., data blocks are set to 64B.

However, our particular method uses multi-spectral reuse

distance, which is to say that we sample reuse distance at

64B, 4KiB, and 2MiB. The ’multi-spectral’ character of our

methodology is what enables us to yield additional spatial

locality information.

C. Earth Mover’s Distance

Earth Mover’s Distance (EMD) is a metric described by

Rubner et al. [30] that quantifies the similarity of two his-

tograms by finding the minimum amount of work necessary to

transform the mass of one histogram into the other. In keeping

with the spirit of the nomenclature, the two histograms can

intuitively be viewed as a supplier and consumer of dirt (mass)

that make up the two disjoint sets of a complete bipartite

graph with weighted edges. The nodes of the supplier set can

be viewed as piles of dirt, where the amount of earth in the

pile corresponds to the value of that bin. The nodes of the

consumer set can be regarded as holes, where the depth of

each hole corresponds to the value of that bin. The weights

are the distances between a given pile and hole. The amount

of work to fill a given hole with dirt from a given pile is a

function of the amount of dirt to be moved from the pile to

the hole and the ground distance between the two.

More formally, bins are formed by grouping reuse distances

into ranges of exponentially increasing reuse distances, with

the exception of the first bin which has a range of [0,4). The

bins used in this work can be observed as the labels of the

x-axis in Figure 2. Mass is the value of a given bin of a reuse

signature. Ground distances refer to the distance between the

indices of the supplier and consumer bin. Though bin ranges

grow exponentially, their indices are linear (e.g., bin with range

[0,4) has index 0, bin with range [4, 8) has index 1, bin with

range [8, 16) has index 2). As an example of ground distance

in the context of EMD, the distance between bin [0,4) in one

histogram and bin [32, 64) in the other histogram would be:

abs( index( [0, 4) )− index( [32, 64) ) ) = abs( 4− 0 )

= 4

The amount of mass located at each bin is defined by X =
x1, . . . , xn and Y = y1, . . . , yn, for the supplier and consumer

distributions, respectively.

From this, EMD can be solved for by applying polynomial

time linear programming methods [30] to minimize the fol-

lowing equation:

EMD =

n∑

i=1

n∑

j=1

fijcij (1)

where cij is the distance (cost) of moving mass from bin i to

bin j and fij is the amount moved from bin i to bin j.



The minimization of EMD is subject to the following

constraints:

fij ≥ 0 (2)
n∑

j=1

fij = xi, xi ∈ X (3)

n∑

i=1

fij = yj , yj ∈ Y (4)

In our case, we quantify the similarity between reuse

distance signatures X and Y (e.g., reuse distance signatures

for 64KiB and 4KiB granules), where fij is the amount of

mass that will be moved from bin xi to yj and the cost of

moving that mass is defined by cij . The amount of mass in

both X and Y is normalized to 1, and our cost function is

simply the difference between the given indices, i.e.,

cij = j − i

D. Memory Footprint

The memory footprint is derived from the final state of the

reuse distance stack after performing reuse distance analysis

at a given data block granularity. For each granularity, the

memory footprint is calculated as follows:

Sblock granularity ×Nunique blocks (5)

where Sblock granularity is the size of the granularity used for

reuse distance analysis and Nunique blocks is the number of

unique data blocks accessed at that granularity. Calculating

the memory footprint yields a measure of how much data

(in bytes) is paged in for the profiled application’s region of

interest.

As an example, consider the final state of the reuse distance

stack in Figure 1(b). If we assume that the granularity of each

block is 2MiB,

Sblock granularity = 2MiB

Nunique blocks = 3

Memory Footprint = 6MiB

This calculation shows that 6MiB of data were paged when

profiled in a given region of interest.

IV. RESULTS AND DISCUSSION

The reuse signatures for each benchmark are shown in

Figure 2. Isolating any one granularity shows typical tem-

poral locality information such as how a particular memory

subsystem will handle the memory reference access pattern

of a given application (e.g., how many off-chip memory

references to expect based on the PMF past the capacity of the

last-level cache). Analyzing the reuse signatures of different

granularities (a.k.a., multi-spectral reuse distance) provides

valuable insight on the spatial locality of an application.

A. Spatially Dense Memory Accesses

When comparing the different signatures, there are two

prototypical behaviors as the granularity of the reuse distance

analysis is increased.

The first is the shift of mass in the PMF towards the bins of

shorter reuse distances. An example of this is the result from

464.h264ref -- 2719 in Figure 2. When the granularity

is 64B, almost a third of all memory references exhibit reuse

distances greater than or equal to 8. At the 4KiB granularity,

all memory references exhibit reuse distances no greater than

16. In the 2MiB case, virtually all reuse occurs within a reuse

distance of 3.

The second behavior is the shape of the PMF remaining

largely the same as the granularity is increased. There are two

manifestations of this behavior. One is when the mass of each

of the reuse signatures are contained mostly in the first bin.

The result from 450.soplex -- 930 in Figure 2 shows

almost identical reuse signatures for all 3 granularities, where

90% of the memory references happen within a reuse distance

of 3 when the granularity is 64B, and 100% for 4KiB and

2MiB. The other manifestation is shown in the result from

from 4x0.mega_stream. For the 64B granularity, 70% of

the PMFs mass is located in the [4,8) bin. While increasing

the granularity to both 4KiB and 2MiB captures some of the

mass to the right of this bin in the 64B case, the shape of the

distribution remains largely unchanged.

The shifting (or not) of the PMF from higher to lower reuse

distances bins as the granularity increases serves as a measure

for how spatially dense the memory references are. A shift is

indicative of memory references that reside on different data

blocks at one granularity but reside on the same data block at

a larger granularity. For example, refer back to the example

reference trace in Section III-B and assume the granularity to

be 64B. If references a, b, and c all reside on the same 4KiB

data block, then when the reuse distance analysis is conducted

at 4KiB granularity, then the reuse distance becomes 0 for all

references. This is because the 64B data blocks that a, b, and

c resided on were subsumed by the same 4KiB block. This is

representative of the first prototypical behavior. If references

a, b, and c reside on different 4KiB data blocks, then the reuse

distances remain the same because they will not be subsumed

by the same 4KiB block. Thus, we are able to observe the

spatial locality for memory references by performing reuse

distance analysis at different granularities.

1) Directionality of Mass Shift: Additionally, it is possible

to formally prove the directionality of the mass shift that

occurs when comparing the reuse signature of a smaller

granularity to a larger one. In general, if we view the virtual

address space of a process divorced from the physical address

space underlying it, then we can view it as a contiguous

space ❆. Realistically this space has a natural range from

0 to (264 − 1) for most 64-bit architectures. Calculating the

reuse distance as previously defined in Section III-B, with a

single bin size of ❆ would result in a distance of zero and

nothing else. Consider dividing this single space ❆ into two



Fig. 2. Reuse distance signatures for all benchmarks. The numbers following the name of each benchmark are the line numbers on which the regions of
interest for that application start.

spaces (as illustrated in Figure 3), denoted as set ❇, ❆
2

→
{❇0,❇1} = ❇. There are two spaces and two possible reuse

distances: zero and one. Each of these spaces has the relation

(when comparing the size of each space, or granularity of reuse

bin) of: |❆|> |❇0|= |❇1|. It follows, then, that regardless

of the the reuse bin within set ❇, when superimposed over

the larger set ❆, the reuse distance will be zero with regards

to that set. Dividing the subsets of ❇ yet again yields four

spaces, which we denote as set ❈ corresponding to four reuse

distance bins. All valid programs must fit within the space of

❆. The same cannot be said of the subsets of ❇ or ❈. It is

expected, and required, that the next larger set will subsume

smaller ones. These sets are equivalent to the reuse distance

granularities we have chosen, as an example, ❇ could equal

2MiB, ❈ could equal 4KiB, etc. If, as we have described with

the multiple sized sets, we instead have multiple fixed sizes

of reuse distance bins, then the bin widths should exhibit the

same pattern and directionality. That is, if the distributions of

each granularity are ordered with the smallest granularity bin

widths in front and the largest granularity widths in back (if

on a three-dimensional axis, the PMF of each reuse distance

measurement would have the probability on the y-axis, the bin

count on the x-axis, and the z-axis would be ordered from

smallest to largest), then we would expect the mass when

moving from front to back (with respect to the z-axis) to slide

towards the zero bin of the largest granule. When ordered in

this way, taking the multi-spectral reuse distance measurement

has two immediate consequences we can exploit: when moving

along the z-axis, we can qualitatively assess spatial density

and the degree by which larger granules subsume (or do not

subsume) smaller ones based on changes along the x- and y-

axes. Second, with sufficiently large reuse distance bins, the

mass will always converge to a zero reuse distance bin when

moving in a positive direction along the z-axis (smaller reuse

distance widths to larger ones).

2) EMD as a Spatial Locality Measure: The amount of

mass that is shifted from one distribution to another is empiri-

cally shown by computing the Earth Mover’s Distance between

them, as described in Section III-C. The results of comparing

the 64B and 4KiB distributions and the 4KiB and 2MiB ones

are shown in Figure 5. The closer the EMD is to zero, the

more similar the distributions are. It follows that EMDs that

approach zero demonstrate behavior in which larger data block

granularities do not subsume smaller ones (within the range of

granularities measured, as proven previously, eventually they

will always be subsumed), and that their memory reference
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patterns are less spatially dense (i.e., having parts close to-

gether) than two distributions that express a large EMD.

For example, the 470.lbm -- 186 benchmark has the

highest EMD score among all of the 64B vs. 4KiB com-

parisons. From Figure 2, at the 64B granularity, over 20%

of all reuse distances are at least 4MiB away. However, we

observe qualitatively in the shifting of mass from 64B to 4KiB

in Figure 2, and quantitatively with Figure 5 an EMD that

is much greater than zero, that much of the necessary data

for computation is resident on the same 4KiB data blocks.

The implications of these observations will be explored in the

following subsections.

B. Page Sizing and Utilization

1) Page Sizing: The reuse signatures and their respective

EMD results also have implications for selecting the page size

for a given computer system. In many system architectures,

it is possible to alter the page size from 4KiB or 8KiB to

something larger to try and exploit spatial locality and reduce

translation overhead. From the spatial locality information that

results from Figures 2 and 5, it is possible to evaluate whether

there are any performance benefits to increasing page size.

Referring to the 464.h264ref -- 2719 benchmark,

we observe mass shifting in its reuse signatures and EMD

scores that are greater than zero. In fact, at the 2MiB granu-

larity, all of the data required for this computation is resident

within strides of 0 to 8MiB, i.e., all of the mass is located in

the first bin. This suggests an extremely dense spatial locality

access pattern, which would benefit from larger pages.

Antithetical to this are the results from the

4x0.mega_stream -- 370, which qualitatively in

Figure 2 shows no shift in mass and has a very small EMD

at all granularities. Specifically, it is shown that at least 75%

of all reuse distances are occurring between 8 and 16 at all

granularities. At the largest granularity, 75% of all accesses

are touching data resident on at least 4 different 2MiB pages

before that data is reused again. Larger page sizes are not

subsuming the memory references from smaller granularities.

Thus, larger page sizes cannot extract spatial locality from

applications in which that spatial locality does not exist.

2) Page Utilization: The memory footprint data, calculated

using 5, for each benchmark is presented in Figure 4. Each

granularity is normalized to the 64B case. From this, it is

possible to determine how much extraneous data, if any,

is paged in when larger pages are used. When looking at

Figure 4, any bar that extends past the black dotted line

indicates that more memory was paged in than was necessary.

We will investigate this idea further in the remainder of this

section.

The 462.libquantum -- 61 benchmark results from

Figures 2 and 5 show benefits for increasing larger page

sizes, while also fully utilizing the data that is paged in. This

is evidenced by the amount of data paged in at the 2MiB

granularity being almost equal to the amount paged in for the

64B case. Referring to Equation 5, the Sblock granularity term

will be larger in the 2MiB case than for the 64B case, but

the spatially local accesses at the larger granularity decrease

the Nunique blocks term such that the memory footprint of the

two cases are almost equal. We will now examine applica-

tions for which non-spatially local accesses result in bigger

discrepancies in memory footprint at their respective measured

granularities.

Looking at 464.h264ref -- 2419 and

464.h264ref -- 2719, however, we observe that,

although the 2MiB page size subsumes the smaller granules,

the 2MiB page size actually pages in 10× and 100× more

data, respective to each function, than is actually necessary,

assuming that every byte of each 64B data block pulled

in is fully utilized (note: this is a strong assumption given

the previous characterizations of Dark Bandwidth[2]). Thus,

using a 2MiB page size for this application puts undue stress

on the coherence bus, and wastes a considerable amount of

energy since it has to move 10× and 100× more data than is

actually necessary.

The 4x0.mega_stream -- 370 benchmark is partic-

ularly interesting because it has been previously shown that

its spatial locality access pattern is not dense, and that larger

pages do not subsume the smaller data block granules and

help with spatial locality. However, virtually all of the data

that is paged in, even at the 2MiB granularity, is used as

shown in Figure 4. Thus, the page utilization is very good

for this application. This result indicates that it may be a

prime candidate for a data layout transformation in order

to reduce the amount of data movement and increase the

amount of available physical at any given instant. The spatial



Fig. 4. Memory footprint normalized to 64B granularity.

and temporal locality patterns of this benchmark indicate that

multiple values are pulled from each page at any given instant.

However, streaming them in a packed fashion would improve

the utilization over any given time window (recall that the

overall utilization is large, but only after the entire application

has executed).

C. Data Layout Transformation

The layout of the data necessary for the computation directly

impacts the spatial locality characterization of an application.

Recent work such as [1] shows that data movement can be

reduced by transforming the layout of data near memory to

better exploit spatial locality for current memory subsystem

and reduce superfluous data movement. Given that a data lay-

out transformation is possible at multiple levels of the memory

hierarchy, it is possible to better determine at which level

to perform the data layout transformation. We can identify

the levels to perform the data layout transformation using the

memory footprint analysis performed in this work.

In the case of 4x0.mega_stream, the memory footprint

data shows that, even at the largest page size, all of the data

that gets paged in eventually gets used. Since even at such

a large granularity the spatial access is not dense, it would

be beneficial to perform the data layout transformation nearer

the data, so that the data that gets paged in is densely packed,

which will reduce the amount of fast physical memory that

must be utilized, improve cache utilization, and lastly reduce

the overall energy of computation. The last improvement

would primarily be due to the reduced need to refresh DRAM

rows [15] compared to a non-data layout transformation case

(as less physical DRAM need be provisioned). When using

a data layout transformation mechanism such as SPiDRE [1],

the data could be streamed as needed potentially reducing the

need to store data in DRAM.

V. CONCLUSIONS

The problem of efficiently feeding processing elements and

finding ways to reduce data movement is a pervasive problem

in computing. Efficient modeling of both temporal and spatial

locality of memory references is invaluable in identifying

superfluous data movement in a given application.

Fig. 5. Comparing (64B, 4KiB) and (4KiB, 2MiB) reuse signatures using
Earth Mover’s Distance.

In this work, we have presented a way to model both spatial

and temporal locality using what we term “multi-spectral

reuse distance,” derived from classic reuse distance analysis.

Reuse distance is a metric traditionally used to determine

the temporal locality of an application. Multi-spectral reuse

distance is measured by performing reuse distance measure-

ment at differing reuse distance granularities, in example,

64B, 4KiB, and 2MiB sizes. This approach allows for a

qualitative observation of spatial locality, through observing

the shifting of mass in an application’s reuse signature at

different granularities. Furthermore, this aspect can be quan-

tified through the Earth Mover’s Distance between ordered

sets (ordered on reuse distance bin size) of probability mass

functions of an application. It is these sets of PMFs that

define the multi-spectral reuse distance. This characterization

was performed on a subset of the SPEC2006 benchmark, as

well as a streaming mini-application characteristic of stencil

calculations.

From the multi-spectral characterization, it is possible to

determine how spatially dense the memory references of an

application are based on the degree to which the mass has

shifted (or not shifted) and how close (or far) the Earth

Mover’s Distance is to zero as the data block granularity is

increased. It is also possible to make inferences based on this

information as to the appropriate page size, and whether or not

a given page is being fully utilized. From the applications pro-

filed, it is observed that not all applications will benefit solely

from having a larger page size. Additionally, larger data block

granularities subsuming smaller ones suggest that larger pages

will allow for more spatial locality exploitation, but examining

the memory footprint will show whether those larger pages are

fully utilized or not. Finally, it is possible to infer where in

the memory hierarchy a data layout transformation could be

beneficial in order to more efficiently move data by observing

the data utilization within given data page.

VI. FUTURE WORK

One area of future work would be to enable an automated

analysis of spatial and temporal locality as a means to discern

if applications would benefit from a data layout transformation

on the fly, so that data layout transformations could be applied



in a more demand-based way. It is a well known fact that

calculating reuse distance with large bins requires storing

less information than with smaller bins. This is observed by

considering two cases: a reuse distance bin spanning from zero

through 264 − 1 becomes just a counter while maintaining

smaller bins results in more than a single counter in direct

proportion to the width of the bins relative to the overall

address space. A direct implication of this is that online

instrumentation could be developed that exploits this property,

measuring larger bins for an application while shifting to

smaller bins only when necessary. A direct implication of this

property, is that multi-spectral reuse distance could become a

tool to address data placement and migration. Speaking more

plainly, coarser granularities can be used to make the on-the-

fly computation more feasible.
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