
RAFTLIB
Presented by: Jonathan Beard

To: C++Now 2016

RAFTLIB

Alternate Titles:
This thing I started on a plane

RAFTLIB

Alternate Titles:
This thing I started on a plane

What’s this RaftLib Thingy?

RAFTLIB

Alternate Titles:
This thing I started on a plane

What’s this RaftLib Thingy?
 OMG, Another Threading Library…

RAFTLIB

Alternate Titles:
This thing I started on a plane

What’s this RaftLib Thingy?
 OMG, Another Threading Library…

Why I hate parallel programming

RAFTLIB
Alternate Titles:

This thing I started on a plane
What’s this RaftLib Thingy?

 OMG, Another Threading Library…
Why I hate parallel programming

A self help guide for pthread anxiety

All thoughts, opinions are my own.
RaftLib is not a product of ARM Inc.

Please don’t ask about ARM products or
strategy. I will scowl and not answer.

Thank you 😎

ABOUT ME
my website

 http://www.jonathanbeard.io

slides at
 http://goo.gl/cwT5UB

project page

 raftlib.io

http://www.jonathanbeard.io
http://goo.gl/cwT5UB
http://raftlib.io

WHERE I STARTED

WHERE I STARTED

💡⇢
10

WHERE I STARTED

💡⇢ ⇢
11

WHERE I STARTED

💡⇢
12

const uint8_t fsm_table[STATES][CHARS]=
 {
 /* 0 - @ */ {[9]=0x21},
 /* 1 - NAME */ {[0 ... 8]=0x11 ,[11]=0x32},
 /* 2 - SEQ */ {[1 ... 2]=0x42 ,[5]=0x42,[8]=0x42,[11]=0x13},
 /* 3 - \n */ {[1 ... 2]=0x42 ,[5]=0x42,[8]=0x42,[10]=0x14},
 /* 4 - NAME2 */ {[0 ... 8]=0x54 ,[11]=0x15},
 /* 5 - SCORE */ {[0 ... 10]=0x65,[11]=0x16},
 /* 6 - SEND/SO */ {[9] = 0x71,[11] = 0x16}
 };

NECESSITY DRIVES IDEAS

�������
����������

������

������������

���-�

������

�����

�����

�����

����

�����

����

����
�++
���

���

����

���

��

�

�

NECESSITY DRIVES IDEAS

�������
����������

������

������������

���-�

������

�����

�����

�����

����

�����

����

����
�++
���

���

����

���

��

�

�

�����_������������

�����_������������

�������_�����������
�������_�����������

�����_���������

�����_�����������
�����_�����������

�������_�����

���_���������
�������_������

����_�����

���_����

��������������������

������

���������

AN (PERHAPS BAD) ANALOGY

AN (PERHAPS BAD) ANALOGY

AN (PERHAPS BAD) ANALOGY

ANALOGY PART TWO

TOPOLOGY

THE JELLYFISH

THE FIRST ORGANISM TO OVERLAP ACCESS AND EXECUTION

DATA MOVEMENT DOMINATES

Source: Shekhar Borkar, Journal of Lightwave Technology, 2013

I SHOULDN’T HAVE TO CARE

⚙⚙Gene Expression Data

Multiple Sequence
Alignment

23

I SHOULDN’T HAVE TO CARE

⚙⚙Gene Expression Data

Multiple Sequence
Alignment

24

HARDWARE

Cray X-MP/48
$19 million / GFLOP $.08 / GFLOP

1984 2015

CORES PER DEVICE

FINANCIAL INCENTIVE

Sequential JS: $4-7/line

HPC Code: $100/line

Embedded Code: $30-50/line

Sequential Java: $5-10/line

WHY YOU SHOULD CARE

PRODUCTIVITY / EFFICIENCY AN EQUALIZER

➤ Titan SC estimates for porting range from 5, to > 20 million
USD

➤ Most code never really optimized for machine topology,
wasting $$ (time/product) and energy

➤ Getting the most out of what you have is an equalizer

{ �������
����������

������

������������

���-�

������

�����

�����

�����

����

�����

����

����
�++
���

���

����

���

��

�

�

HAVES AND HAVE NOTS

Start-up /

Small Government
Gov’t / Big Business

•Lots of $$

•Can hire the best people

•Can acquire the rest

•Plenty of compute resources

•Not a lot of $$

•Often can’t hire the best
people

•Left to the mercy of cloud
providers

AN IDEA

Let’s make
computers super
fast, and easy to

program

31

WHERE TO START

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or direct commercial advantage and that copies show this notice on the first page or
initial screen of a display along with the full citation. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, Inc., 1515 Broadway, New
York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

Brook for GPUs: Stream Computing on Graphics Hardware

Ian Buck Tim Foley Daniel Horn Jeremy Sugerman Kayvon Fatahalian Mike Houston Pat Hanrahan

Stanford University

Abstract

In this paper, we present Brook for GPUs, a system
for general-purpose computation on programmable graphics
hardware. Brook extends C to include simple data-parallel
constructs, enabling the use of the GPU as a streaming co-
processor. We present a compiler and runtime system that
abstracts and virtualizes many aspects of graphics hardware.
In addition, we present an analysis of the effectiveness of the
GPU as a compute engine compared to the CPU, to deter-
mine when the GPU can outperform the CPU for a particu-
lar algorithm. We evaluate our system with five applications,
the SAXPY and SGEMV BLAS operators, image segmen-
tation, FFT, and ray tracing. For these applications, we
demonstrate that our Brook implementations perform com-
parably to hand-written GPU code and up to seven times
faster than their CPU counterparts.

CR Categories: I.3.1 [Computer Graphics]: Hard-
ware Architecture—Graphics processors D.3.2 [Program-
ming Languages]: Language Classifications—Parallel Lan-
guages

Keywords: Programmable Graphics Hardware, Data
Parallel Computing, Stream Computing, GPU Computing,
Brook

1 Introduction

In recent years, commodity graphics hardware has rapidly
evolved from being a fixed-function pipeline into having pro-
grammable vertex and fragment processors. While this new
programmability was introduced for real-time shading, it has
been observed that these processors feature instruction sets
general enough to perform computation beyond the domain
of rendering. Applications such as linear algebra [Krüger
and Westermann 2003], physical simulation, [Harris et al.
2003], and a complete ray tracer [Purcell et al. 2002; Carr
et al. 2002] have been demonstrated to run on GPUs.

Originally, GPUs could only be programmed using as-
sembly languages. Microsoft’s HLSL, NVIDIA’s Cg, and
OpenGL’s GLslang allow shaders to be written in a high
level, C-like programming language [Microsoft 2003; Mark
et al. 2003; Kessenich et al. 2003]. However, these lan-
guages do not assist the programmer in controlling other
aspects of the graphics pipeline, such as allocating texture
memory, loading shader programs, or constructing graphics
primitives. As a result, the implementation of applications
requires extensive knowledge of the latest graphics APIs as
well as an understanding of the features and limitations of

modern hardware. In addition, the user is forced to ex-
press their algorithm in terms of graphics primitives, such
as textures and triangles. As a result, general-purpose GPU
computing is limited to only the most advanced graphics
developers.

This paper presents Brook, a programming environment
that provides developers with a view of the GPU as a stream-
ing coprocessor. The main contributions of this paper are:

• The presentation of the Brook stream programming
model for general-purpose GPU computing. Through
the use of streams, kernels and reduction operators,
Brook abstracts the GPU as a streaming processor.

• The demonstration of how various GPU hardware lim-
itations can be virtualized or extended using our com-
piler and runtime system; specifically, the GPU mem-
ory system, the number of supported shader outputs,
and support for user-defined data structures.

• The presentation of a cost model for comparing GPU
vs. CPU performance tradeoffs to better understand
under what circumstances the GPU outperforms the
CPU.

2 Background

2.1 Evolution of Streaming Hardware

Programmable graphics hardware dates back to the origi-
nal programmable framebuffer architectures [England 1986].
One of the most influential programmable graphics systems
was the UNC PixelPlanes series [Fuchs et al. 1989] culmi-
nating in the PixelFlow machine [Molnar et al. 1992]. These
systems embedded pixel processors, running as a SIMD pro-
cessor, on the same chip as framebuffer memory. Peercy et
al. [2000] demonstrated how the OpenGL architecture [Woo
et al. 1999] can be abstracted as a SIMD processor. Each
rendering pass implements a SIMD instruction that per-
forms a basic arithmetic operation and updates the frame-
buffer atomically. Using this abstraction, they were able
to compile RenderMan to OpenGL 1.2 with imaging exten-
sions. Thompson et al. [2002] explored the use of GPUs as
a general-purpose vector processor by implementing a soft-
ware layer on top of the graphics library that performed
arithmetic computation on arrays of floating point numbers.

SIMD and vector processing operators involve a read, an
execution of a single instruction, and a write to off-chip mem-
ory [Russell 1978; Kozyrakis 1999]. This results in signifi-
cant memory bandwidth use. Today’s graphics hardware
executes small programs where instructions load and store
data to local temporary registers rather than to memory.
This is a major difference between the vector and stream
processor abstraction [Khailany et al. 2001].

The stream programming model captures computational
locality not present in the SIMD or vector models through
the use of streams and kernels. A stream is a collection
of records requiring similar computation while kernels are

777

© 2004 ACM 0730-0301/04/0800-0777 $5.00

WASHINGTON UNIVERSITY

SCHOOL OF ENGINEERING AND APPLIED SCIENCE

DEPARTMENTOF COMPUTER SCIENCE AND ENGINEERING

X-SIM AND X-EVAL:

TOOLS FOR SIMULATION AND ANALYSIS OF HETEROGENEOUS PIPELINED

ARCHITECTURES

by

Saurabh Gayen

Prepared under the direction of Professor Mark A. Franklin

A thesis presented to the School of Engineering and Applied Science
Washington University in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

May 2008

Saint Louis, Missouri

SPADE: The System S Declarative
Stream Processing Engine

Buğra Gedik
IBM Thomas J. Watson

Research Center, Hawthorne,
NY, 10532, USA

bgedik@us.ibm.com

Henrique Andrade
IBM Thomas J. Watson

Research Center, Hawthorne,
NY, 10532, USA

hcma@us.ibm.com

Kun-Lung Wu
IBM Thomas J. Watson

Research Center, Hawthorne,
NY, 10532, USA

klwu@us.ibm.com

Philip S. Yu
Department of Computer

Science, University of Illinois,
Chicago, IL, 60607, USA

psyu@cs.uic.edu

MyungCheol Doo
College of Computing,

Georgia Institute of
Technology, GA, 30332, USA
mcdoo@cc.gatech.edu

ABSTRACT

In this paper, we present Spade − the System S declarative
stream processing engine. System S is a large-scale, dis-
tributed data stream processing middleware under develop-
ment at IBM T. J. Watson Research Center. As a front-end
for rapid application development for System S, Spade pro-
vides (1) an intermediate language for flexible composition
of parallel and distributed data-flow graphs, (2) a toolkit of
type-generic, built-in stream processing operators, that sup-
port scalar as well as vectorized processing and can seam-
lessly inter-operate with user-defined operators, and (3) a
rich set of stream adapters to ingest/publish data from/to
outside sources. More importantly, Spade automatically
brings performance optimization and scalability to System
S applications. To that end, Spade employs a code genera-
tion framework to create highly-optimized applications that
run natively on the Stream Processing Core (SPC), the exe-
cution and communication substrate of System S, and take
full advantage of other System S services. Spade allows de-
velopers to construct their applications with fine granular
stream operators without worrying about the performance
implications that might exist, even in a distributed system.
Spade’s optimizing compiler automatically maps applica-
tions into appropriately sized execution units in order to
minimize communication overhead, while at the same time
exploiting available parallelism. By virtue of the scalability
of the System S runtime and Spade’s effective code genera-
tion and optimization, we can scale applications to a large
number of nodes. Currently, we can run Spade jobs on
≈ 500 processors within more than 100 physical nodes in a
tightly connected cluster environment. Spade has been in
use at IBM Research to create real-world streaming appli-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-102-6/08/06 ...$5.00.

cations, ranging from monitoring financial market feeds to
radio telescopes to semiconductor fabrication lines.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems—Distributed
databases; H.2.3 [Database Management]: Languages—
Data manipulation languages

General Terms

Design

Keywords

Distributed Data Stream Processing

1. INTRODUCTION
On-line information sources are increasingly taking the

form of data streams, that is time ordered series of events
or readings. Example data streams include live stock and
option trading feeds in financial services, physical link statis-
tics in networking and telecommunications, sensor readings
in environmental monitoring and emergency response, and
satellite and live experimental data in scientific computing.
The proliferation of these sources has created a paradigm
shift in how we process data, moving away from the tradi-
tional “store and then process” model of database manage-
ment systems toward the “on-the-fly processing” model of
emerging data stream processing systems (DSPSs). This
paradigm shift has recently created a strong interest in
DSPS-related research, in academia [1, 4, 6, 7] and indus-
try [8, 17, 21, 25] alike.

In this paper we describe the design of Spade, which is
the declarative stream processing engine of the massively
scalable and distributed System S − a large-scale stream
processing middleware under development at IBM Research.
Spade provides a rapid application development front-end
for System S. Concretely, Spade offers:

1. An intermediate language for flexible composition of
parallel and distributed data-flow graphs. This lan-
guage sits in-between higher level programming tools
and languages such as the System S IDE or stream

1123

😀

😜
🤔 😎

32

WHERE TO START

🌩
Raft Language:

•Object oriented

•Multiple inheritance

•Simple types

•…. lots morex Language
Java
C

C++
C#

Python

Library

33

RAFTLIB

C++ Streaming Template Library

Simplifies parallelization of code

Abstracts the details

Auto-manages allocation types, data
movement.

software download: http://raftlib.io

34

http://raftlib.io

ISSUES THAT NEED SOLUTIONS

➤ Usable Generic API

➤ Where to run the code

➤ Where to allocate memory

➤ How big of allocations to start off with

➤ How many user vs. kernel threads

➤ …Gilligan had a better chance of having a 3 hour tour

➤ …than we have of fitting all the issues on a single slide

STREAM PROCESSING (STRING SEARCH EXAMPLE)

Match

Read File,
Distribute

Match

Match Reduce

1

i

n

36

STREAM PROCESSING (STRING SEARCH EXAMPLE)

37

Input Data
Stream

Get Data Send Data

Output Data
Stream

Match

Read File,
Distribute

Match

Match Reduce

1

i

n

STREAM PROCESSING (STRING SEARCH EXAMPLE)

38

Match

Read File,
Distribute

Match

Match Reduce

1

i

n

data avail

Run Kernel

Don’t Run

No

Yes

HOW IT WORKS (HIGH LEVEL)

Define Streaming
Topology

Check Graph
Connectivity &

Types

Map Kernels to
Resources

Continually
Monitor Buffer

Behavior

Continually
Monitor Kernel
Performance

39

Stream Processing (Search Ex)

40

Stream Processing (Search Ex)

41

Stream Processing (Search Ex)

42

Stream Processing (Search Ex)

43

Stream Processing (Search Ex)

44

Stream Processing (Search Ex)

45

CHOOSE YOUR ADVENTURE

46

Interface
Models

Implementation

⏏

MODELING

Modeling

Mapping

Scheduling

Allocation

•RaftLib optionally uses
Scotch

•Otherwise basic affinity

•OS Managed
•Affinity Locked (Linux/Unix)
•Run-time yields when blocked

Mostly my work,
which we can talk
about

MODELING ISSUES - SIZE OF Q1

48

BQ1A

WHY DO WE NEED TO SOLVE

➤ Buffer allocations take time and energy

➤ Programmers are horrible at deciding (too many parameters)

➤ Hardware specific locations matter (NUMA)

➤ Re-allocating with an accelerator takes even more time (bus
latency, hand-shakes, etc.)

➤ Must be solved in conjunction with partitioning/scheduling/
placement

49

MODELING

B CQ1 Q2A

A B C

“Stream” is modeled as a Queue

50

MONITOR

processor
core

processor
core

Kernel Thread

Monitor Thread

Kernel Thread

processor
core

OS Scheduler

Kernel A Kernel BStream

51

APPROXIMATE INSTRUMENTATION

BQ1A

52

SOLVE FOR THROUGHPUT QUICKLY

Use network flow model
to quickly estimate flow
within a streaming graph

Decompose queueing
network and solve each
queueing station
independently

A

B C

D

μ = GB/s

μ μ

μ

CC

C C

53

HOW WOULD YOU GET THE RIGHT BUFFER SIZE?

BQ1A

M/D/1 M/M/1 None

?

Queueing Model to Solve for Buffer Size

54

HOW WOULD YOU GET THE RIGHT BUFFER SIZE?

BQ1A

M/D/1 M/M/1 None

?

Queueing Model to Solve for Buffer Size

55

ML BASED MODEL SELECTION

M/M/1

M/M/1

Classifier

Apply the
Model

56

CHOOSE YOUR ADVENTURE

57

Interface
Models

Implementation

⏏

COMPUTE KERNEL

58

Input Data
Stream

Get Data Send Data

Output Data
Stream

COMPUTE KERNEL

59

Input Data
Stream

Get Data Send Data

Output Data
Stream

class akernel : public raft::kernel
{
public:
 akernel() : raft::kernel()
 {
 //add input ports
 input.addPort< /** type **/ >("x0","x1", "x...");
 //add output ports
 output.addPort< /** type **/ >("y0", "y1", "y...");
 }

 virtual raft::kstatus run()
 {
 /** get data from input ports **/
 auto &valFromX(input["x..."].peek< /** type of "x..." **/ >());
 /** do something with data **/

 const auto ret_val(do_something(valFromX));

 output["y..."].push(ret_val);

 input["x..."].unpeek();
 input["x..."].recycle();
 return(raft::proceed /** or stop **/);
 }
};

COMPUTE KERNEL

60

Input Data
Stream

Get Data Send Data

Output Data
Stream

class example : public raft::parallel_k
{
public:
 example() : parallel_k()
 {
 input.addPort< /** some type **/ >("0");
 /** add a starter output port **/
 addPort();
 }

 /** implement virtual function **/
 virtual std::size_t addPort()
 {
 return((this)->addPortTo< /** type **/ >(output /** direction **/));
 }

"..."

example b c

b

RECEIVING DATA

61

Input Data
Stream

Get Data Send Data

Output Data
Stream

/**
 * return reference to memory on
 * in-bound stream
 */
template< class T >
T& peek(raft::signal *signal = nullptr)

template< class T >
autorelease< T, peekrange > peek_range(const std::size_t n)

template < class T > struct autopair
{
 T &ele;
 Buffer::Signal &sig;
};

•Returns object with “special access to stream”
•Operator [] overload returns auto pair
•Direct reference as in peek() for each element

RECEIVING DATA

62

Input Data
Stream

Get Data Send Data

Output Data
Stream

/**
 * necessary to tell inbound stream we're done
 * looking at it
 */
virtual
void unpeek()

/**
 * free up index in fifo, lazily deallocate large objects
 */
void
recycle(const std::size_t range = 1)

Is in peek() No: resize,
relocate

Resize, Relocate

Yes

No

Is external
allocate

Wait to see if
object is pushed

downstream

Immediately free
slot w/in stream

Yes

No

RECEIVING DATA

63

Input Data
Stream

Get Data Send Data

Output Data
Stream

/**
 * these pops produce a copy
 */
template< class T >
void pop(T &item, raft::signal *signal = nullptr)

template< class T >
void pop_range(pop_range_t< T > &items,
 const std::size_t n_items)

/**
 * no copy, slightly higher overhead, "smart object"
 * implements peek, unpeek, recycle
 */
template< class T >
autorelease< T, poptype > pop_s()

template< class T > using pop_range_t =
std::vector< std::pair< T , raft::signal > >;

SENDING DATA

64

Input Data
Stream

Get Data Send Data

Output Data
Stream

/** in-place allocation **/
template < class T,
 class ... Args >
T& allocate(Args&&... params)

/** in-place alloc of range for fundamental types **/
template < class T >
auto allocate_range(const std::size_t n) ->
 std::vector< std::reference_wrapper< T > >

sizeof(T) <=
Cache Line

Has
Constructor

Allocate from
External Pool

in-place new
Constructor

Bare
Uninitialized

Memory

yes

no no

yes

SENDING DATA

65

Input Data
Stream

Get Data Send Data

Output Data
Stream

/** release data to stream **/
virtual
void send(const raft::signal = raft::none)

/** release data to stream **/
virtual
void send_range(const raft::signal = raft::none)

/** oops, don't need this memory **/
virtual void deallocate()

SENDING DATA

66

Input Data
Stream

Get Data Send Data

Output Data
Stream

/** multiple forms **/
template < class T >
void push(const T &item, const raft::signal signal = raft::none)

/** insert from container within run() function to stream **/
template< class iterator_type >
void insert(iterator_type begin,
 iterator_type end,
 const raft::signal signal = raft::none)

INCLUDED KERNELS
/**
 * thread safe print, specialization for '\n' vs. '\0'
 */
template< typename T, char delim = '\0' > class print

/** read from iterator to streams **/
static
raft::readeach< T, Iterator >
read_each(Iterator &&begin,
 Iterator &&end)

/** write from iterator to streams **/
template < class T, class BackInsert >
static
writeeach< T, BackInsert >
write_each(BackInsert &&bi)
{
 return(writeeach< T, BackInsert >(bi));
}

CONNECTING COMPUTE KERNELS

raft::map m;
/** example only **/
raft::kernel a, b;
m += a >> b;

a b

CONNECTING COMPUTE KERNELS

raft::map m;
/** example only **/
raft::kernel a, b;
m += a["y0"] >> b;

a

c

b
“y0”

CONNECTING COMPUTE KERNELS

a

c

b
“y0”

“x0”

raft::map m;
/** example only **/
raft::kernel a, b;
m += a["y0"] >> b["x0"];

CONNECTING COMPUTE KERNELS

raft::map m;
/** example only **/
raft::kernel a, b, c;
m += a <= b >= c;

Topology user specifies

a b c

CONNECTING COMPUTE KERNELS

raft::map m;
/** example only **/
raft::kernel a, b, c;
m += a <= b >= c;

RaftLib Turns Into

a b c

b

b

CONNECTING COMPUTE KERNELS

raft::map m;
/** example only **/
raft::kernel a, b, c, d;
m += a <= b >> c >= d;

RaftLib Turns Into

a b d

b

b

c

c

c

CONNECTING COMPUTE KERNELS

raft::map m;
/** example only **/
raft::kernel a, b, c;
m += a >> raft::order::out >> b >> raft::order::out >> c;

a b c

b

b

•Clone at SESE points
•Use CLONE macro

AUTO-PARALLELIZATION

a b c

b

b

1) RaftLib figures out methodology
2) Runtime calls CLONE() macro of kernel “b”

#define CLONE()\
virtual raft::kernel* clone()\
{ \
 auto *ptr(\
 new typename std::remove_reference< decltype(*this) >::type((*(\
 (typename std::decay< decltype(*this) >::type *) \
 this))));\
 /** RL needs to dealloc this one **/\
 ptr->internal_alloc = true;\
 return(ptr);\
}

AUTO-PARALLELIZATION

a b c

b

b

3) Lock output port container of “a”
4) Register new port
5) Decide where to run it
6) Allocate memory for stream
7) Unlock output container of kernel “a”
//do same on output side of “b”

CONNECTION TODO ITEMS

➤ Better SESE implementation

➤ Decide on syntax for set of kernels

➤ Address space stream modifier (new VM space)

➤ Anything else?

raft::map m;
/** example only **/
raft::kernel a, b, c, d;
m += src <= raft::kset(a, b, c, d) >= dst;

raft::map m;
/** example only **/
raft::kernel a, b, c;
m += a >> raft::vm::part >> b >> raft::vm::part >> c;

CHOOSE YOUR ADVENTURE

78

Interface
Models

Implementation

⏏

IMPLEMENTATION DETAILS

79

Define Streaming
Topology

Check Graph
Connectivity &

Types

Map Kernels to
Resources

Continually
Monitor Buffer

Behavior

Continually
Monitor Kernel
Performance

79

TOPOLOGY CHECK

➤ Add kernels to map

➤ Check type of each link (potential for type optimization)

➤ Handle static split/joins (produce any new kernels)

➤ DFS to ensure no unconnected edges

Match

Read File,
Distribute

Match

Match Reduce

1

i

n

PARTITION (LINUX / UNIX)

➤ Take RaftLib representation, convert to Scotch format

➤ Use fixed communications cost at each edge for initial
partition

➤ 2 main dimensions:

➤ Flow between each edge in the application graph

➤ Bandwidth available between compute resource

➤ Set affinity to partitioned compute cores

➤ Repartition as needed @ run-time

➤ TODO: incorporate OpenMPI utilities hwloc and netloc to get
cross-platform hardware topology information

CHOOSE ALLOCATIONS

➤ Alignment

➤ SIMD ops often require memory alignment, RaftLib takes
an alignment by default approach for in-stream allocations

➤ In-stream vs. External Pool Allocate (template allocators)

sizeof(T) <= Cache Line Has Constructor

Allocate from
External Pool

in-place new
Constructor

Bare
Uninitialized

Memory

yes

no no

yes

MONITOR BEHAVIOR - ALLOCATORS

➤ Two options for figuring out optimal buffer size while running

➤ model based (discussed on modeling adventure path)

➤ branch & bound search

➤ separate thread, exits when app done

➤ pseudocode:

while(not done)
{
 if(queue_utilization > .5)
 {
 queue->resize();
 }
 sleep(ALLOC_INTERVAL);
}

RUN-TIME LOCK FREE FIFO RESIZING
enum access_key : key_t { allocate = 0,
 allocate_range = 1,
 push = 3,
 recycle = 4,
 pop = 5,
 peek = 6,
 size = 7,
 N };
}
struct ThreadAccess
{
 union
 {
 std::uint64_t whole = 0; /** just in case, default zero **/
 dm::key_t flag[8];
 };
 std::uint8_t padding[L1D_CACHE_LINE_SIZE - 8 /** padding **/];
}
#if defined __APPLE__ || defined __linux
__attribute__((aligned(L1D_CACHE_LINE_SIZE)))
#endif
volatile thread_access[2];

/** std::memory_order_relaxed **/
std::atomic< std::uint64_t > checking_size = { 0 };

RUN-TIME LOCK FREE FIFO RESIZING

➤ Optimization…wait for the right conditions

➤ Factory allocators

if(rpt < wpt)
{
 //perfect to copy w/std::memcpy
}

/** allocator factory map **/
std::map< Type::RingBufferType , instr_map_t* > const_map;

/** initialize some factories **/
const_map.insert(std::make_pair(Type::Heap , new instr_map_t()));

const_map[Type::Heap]->insert(
 std::make_pair(false /** no instrumentation **/,
 RingBuffer< T, Type::Heap, false >::make_new_fifo));
const_map[Type::Heap]->insert(
 std::make_pair(true /** yes instrumentation **/,
 RingBuffer< T, Type::Heap, true >::make_new_fifo));
….many more

MONITOR BEHAVIOR - PARALLELIZATION

➤ Mechanics covered in interface, simple model here

➤ Run in separate thread, term on exit

/** apply criteria **/
if(in_utilization > .5 && out_utilization < .5)
{
 //tag kernel
 auto &tag(ag[reinterpret_cast< std::uintptr_t >(kernel)]);
 tag += 1;
 if(tag == 3)
 {
 dup_list.emplace_back(kernel);
 }
}

//after checking all kernels, handle duplication

IMPLEMENTATION TODO ITEMS

➤ Find fast SVM library to integrate (research code used
LibSVM) for buffer model selection

➤ Integrate more production-capable network flow model for
run-time re-partitioning choices

➤ Performant TCP links….

➤ RDMA on wish list

➤ QThreads Integration (see pool scheduler)

➤ hwloc and netloc integration (see partition_scotch)

➤ Perf data caching (useful for initial partition)

CHOOSE YOUR ADVENTURE

88

Interface
Models

Implementation

⏏

PERFORMANCE

➤ Decent compared to pthread stock implementation of pbzip2

➤ Parallel Bzip2 Example: https://goo.gl/xyQAhm

https://goo.gl/xyQAhm

PERFORMANCE

RaftLib (Boyer-Moore)

Apache Spark
(Boyer-Moore) RaftLib

(Aho-Corasick)

GNU Parallel +
 GNU grep

90

➤ Fixed string search compared to Apache Spark, GNU
Parallel + GNU Grep

91

ABOUT ME
my website

 http://www.jonathanbeard.io

slides at
 http://goo.gl/cwT5UB

project page

 raftlib.io

http://www.jonathanbeard.io
http://goo.gl/cwT5UB
http://raftlib.io

93

video of talk given at #CppNow2016
 http://goo.gl/mbxAwK

http://goo.gl/mbxAwK

SBS
Stream Based

Supercomputing Lab
http://sbs.wustl.edu

Stream Processing
for i←0 through N do

a[i] ←(b[i] + c[i])
i++

end do

i++

a,b,c,i

i <=N

a[i] ←(b[i] + c[i])

exit
Read b,c

out <- b + c

Write a

Traditional Control Flow Streaming

94

