
This Architecture Tastes Like 

Microarchitecture 

Curtis Dunham

Jonathan C. Beard

Original Article:
Curtis Dunham, Jonathan C. Beard

This Architecture Tastes Like Microarchitecture 

Published in:

The 2nd Workshop on Pioneering Processor Paradigms (WP3) 2018 (held in 
conjunction with HPCA 2018)



This Architecture Tastes Like Microarchitecture

Curtis Dunham and Jonathan Beard
Arm Research

Austin, Texas, USA

{first.last}@arm.com

Abstract—Instruction set architecture bridges the gap between
actual implementations, or microarchitecture, and the software
that runs on them. Traditionally, instruction sets were a direct
reflection of the hardware resources and capabilities. The two
drifted apart in the rise of CISC and its microcoded implementa-
tions. In the 1980s, the RISC movement reasserted the philosophy
that the two should correspond, and that microcode was a less
desirable approach. Nevertheless, time has shown that the natural
tendency in industrial designs is to treat the instruction set as
an abstraction.

In this paper we review, with several decades of hindsight,
an early RISC proposal in the form of the original MIPS
architecture. While we find that the RISC movement left a legacy
congruent with its philosophy, the specific techniques proposed
in this seminal work were considerably more aggressive and did
not succeed. In our investigation, we find that RISC’s impact on
microarchitecture should be contrasted with its impact on ISA
design, where a promising and under explored approach is to
specify and therefore assume less about how the machine works,
not more. To that end, the authors review several competing ISA
design proposals from others; some that are aligned with the idea
that less detail about the machine is actually more and others,
such as transport triggered architecture, that take machine detail
to the extreme.

I. INTRODUCTION

Broadly speaking, this position paper is about the design of

instruction set architectures (hereafter ISA(s)). In summary,

the strongest tendency is to specify the ISA in a way that

exposes, rather than abstracts over, microarchitectural details

of the naturally envisagable implementations. While this bias

seems natural, we argue that it was further encouraged, to

our detriment, by the RISC philosophy originally espoused

by academics throughout the 1980s. By contrast, the trend in

industrial implementations (with some notable exceptions) is

often to maintain the ISA as an abstraction and to conceal

performance-enhancing indirection behind that abstraction.

The tendency of over-specifying ISAs seems natural and

benign in retrospect, but can it be counteracted? Our ultimate

aim is to convince the reader that an ISA best suited for

both market factors and technical trends, both foreseeable

and otherwise, would maximize its flexibility and therefore

applicability by specifying as little as possible about its

implementation, and we should explore what benefits arise

when these familiar constraints are lifted.

Our presentation is divided in two parts, covering what some

might consider mis-steps in ISA design of the past, followed

by a discussion of what are perhaps some brighter alternatives.

This begins with a critical review of the original MIPS

architecture in section II, as it represents a very early attempt

to (re-)lower the abstraction level of the ISA. Section III

continues in the same vein but focuses on specific lamentable

decisions in other successful architectures, noting that they

tend to focus on low-level aspects of the machine.

A. ISAs: An interface is forever

To a first approximation, code never dies, but machine

implementations last but a few years. As a result, software

retains remnants of machine guts from ages past without an

expiration date. Consider Lisp’s car and cdr accessors of

the cons cell (pair) constructor, which get their names from

assembler macros that extracted the address and decrement

fields, respectively, of a memory word on the IBM 704. While

modern machines have abandoned such memory organizations,

this notation has sixty years of well-earned longevity at the

time of this writing, with no foreseeable end.
While machine interfaces are made low-level in order to

extract performance, the specific machines to which they refer

are constantly being improved, often obsoleting the interface

along with the implementation. While section III gives some

obvious examples, section IV presents the hypothesis that

certain often ignored design fixtures of modern ISAs belong

to this same category. The authors suspect this is due to a

misinterpretation of the RISC legacy, which championed low-

level interfaces like load/store memory architecture.

B. Towards a desirable “forever interface”

Time and time again, attempts to achieve performance

through machine-describing ISAs eventually lose to imple-

mentations that achieve comparable (or better) efficiency with

less effort. The present authors pose an alternate philosophy

of instruction set design: an ISA should serve the computa-

tions, not the machines. In wanting to describe computations

of all kinds, some computations find themselves suffering

from incompatibilities with the machine architecture. In the

penultimate section V the historical emphasis gives way to

an examination of a major problem facing the architecture

community today, and how our perspective provides direction

towards a solution. As we conclude in section VI, we hint at

the long term vision for this work: ISAs that break down the

division between the silos of CPU and GPU, between reuse-

optimized architecture and throughput architecture.

II. MIPS: MICROPROCESSOR WITHOUT INTERLOCKING

PIPELINE STAGES

We find the MIPS treatise by Hennessy, et al. [1] to

be representative of the philosophical thrust of the early



RISC movement. Nota bene, while RISC stands for Reduced

Instruction Set Computing, the movement was about more

than just reducing the instruction set. Its advocates wanted

to regain performance by being able to speak directly to the

microarchitectural structures on the chip, namely the individ-

ual pipeline units (not just ALUs) and registers, which was the

purpose of those reduced instructions. Such a machine would

need no microcode nor would it need hardware interlocks,

because compilers would automatically handle all of the

machine’s tricky aspects. While unsurprising in retrospect that

this approach didn’t pan out, we detail some of the reasons

below.

A. Pipeline interlocks

The MIPS originally had no pipeline interlocks and de-

pended on the software stack to properly avoid any incorrect

behaviors. This approach is untenable for many reasons, but

we will focus on microarchitectural complexity, security con-

cerns, and intellectual property protection. By contrast, today

any such code is part of the implementation-specific microcode

so its use is restricted to fully validated circumstances. We

consider the industrially adopted practice to be superior.

In order for MIPS machine code to perform microengine-

level coordination, it must have perfect knowledge of the tim-

ing of the machine. In fact, [1] describes a scheme that could

be likened to VLIW in control philosophy for how it statically

schedules machine resources, except that the machine was

so simple that the instructions were not very long. The

increased use of aggressive speculation made this approach

all but impossible, however. A deeply pipelined superscalar

machine with cache memories and dynamic branch prediction

can stall under many circumstances, so mainstream CPUs are

dynamically scheduled by necessity. (While a VLIW-style mi-

croarchitecture is not impossible, the known implementations

require very sophisticated translation layers, far more complex

than typical microcode [2]. Eschewing hardware interlocks

this way is certain to run afoul of the “no microcode” tenet

described in the next section.)

The original MIPS architecture’s ability to operate without

pipeline interlocks depended directly upon the machine code

being completely tuned for deep microarchitectural properties

of the implementation. This circumstance brings with it con-

cerns that certain code sequences would be unsafe, i.e., code

flaws could potentially lead to unrecoverable corruption or

crashes. In today’s security theater where an attacker can get a

browser to emit and run specific machine code sequences (con-

sider asm.js [3] or WebAssembly [4] plus RowHammer [5]

or Spectre [6]), such an approach is a non-starter. The mi-

croarchitecture and associated circuitry simply cannot depend

on software to maintain its own internal consistency; rather,

the ISA must attempt to be an impenetrable barrier between

the software and the underlying implementation regardless of

inputs (while the authors acknowledge that this barrier is more

likely to continue to be more of a “Maginot Line” [7] versus

a perfect defense).

Finally, most vendors have strong incentives to protect their

trade secrets. Exposing the deep details of a modern machine

to software runs counter to this goal. While the authors do

not advocate opaque designs such as Intel’s Management

Engine [8][9], neither can designs that are fully transparent

to software control be justified. The trend towards heavy

operating system-like micro-engines that run on cores is

worrisome in that they open up the potential for malware at

the µISA level. Consider for example the recent disclosure

that the microcode format and updating procedure on recent

AMD CPUs have been reverse-engineered [10], demonstrating

the potential for fascinating and frightening µISA malware.

The simple conclusion is that delegating pipeline interlocking

and related concerns to software is a non-starter. The micro-

engine’s operation must be internally and securely managed.

B. No microcode

The MIPS design explicitly gave software direct control

over the “micro-engine.” To adhere to this philosophy most

strongly, the binaries generated for one revision of the archi-

tecture could not necessarily be considered compatible with

the next.

We are careful to not assert that this is undesirable a priori,

but rather that it is a very impactful decision to make. During

that era, commodity compilers of the quality we currently

enjoy in the form of gcc [11] and LLVM [12] did not exist,

nor did a large body of commercially viable software freely

available in source code form. Demanding that programs be

compiled anew for every new version of the machine was

simply an untenable proposition, and even in today’s software

ecosystem it would face troublesome friction.

Consider by contrast long-lived ISAs whose vendors

have consciously focused on backwards compatibility: IBM’s

360/370 family and Intel’s x86 and x86-64. Maintaining the

interface carries market advantages (most notably the software

ecosystem that inevitably must be built around any ISA for it to

be successful), while new performance enhancing technologies

hide behind the ISA interface and further its viability. This

necessitates a separation between ISA and µISA and with

it some amount of microcode. We notice that this points

in exactly the opposite direction of the MIPS micro-engine

philosophy. What was intended by MIPS to be the only

layer of the micro-engine, is now simply the first layer of

indirection after the assembly language. To borrow words from

David J. Wheeler, “We can solve any problem by introducing

another level of indirection.” Micro-code is that second layer

of indirection, solving the problem of exposing a static layer

(ISA) that can’t easily be changed. The introduction of micro-

code is inevitable in any long lived architecture, no matter how

true to the original MIPS philosophy its designers intend to be.

Again, we place our vote with the accepted industry practice:

use of microcode is inevitable and carries many advantages.

So not only is microcode inevitable for correctness and

security reasons, it is also necessary for maintaining the ISA

interface across machine revisions.



C. RISC: a retrospective

It is quite revealing to carefully examine what was being

proposed under the RISC banner in 1981. It is common

today to hear sentiment such as “in microarchitecture RISC

won, but in ISAs CISC won,” supported by the observation

that today’s designs tend to have µISA back-ends processing

simple µ-instructions that seem to embody the RISC ideal.

To engage in such thinking unfairly allows a disconnection

between RISC’s hardware and software philosophies, as there

was no such separation. RISC’s goal of directly exposing the

hardware in the name of performance is a pattern that repeats

quite often [13][14][15]. Furthermore, the modern perspec-

tive discounts the extent to which the original MIPS design

concerns were not solved in the way originally advocated;

i.e. microarchitectures today bear little resemblance with this

MIPS work. RISC adherents championed simple ISAs with no

microcode, but in an ironic twist of fate, that design ethos is

now embodied in the microcode layer. This is why they are

given credit for microarchitecture, but as we have argued, the

microarchitecture proposed in this early work was not viable.

Considering the early days of RISC, perhaps a more accurate

statement would be that “RISC won the µISA”. What is

considered RISC microarchitecture was explored concurrently

by designers of both RISC and non-RISC ISAs.

III. REFLECTIONS ON MODERN MIS-STEPS

Regrettable mistakes in ISA come in many flavors, but one

common aspect is exposing the machine’s internal operations

to the interface. We first discuss two ways that ISAs have at-

tempted to make concessions for branch instructions. Next we

describe an implementation detail of an early Arm processor

that became a long-lived standard for backward compatibility.

Finally we reflect on Intel’s series of SIMD extensions.

A. Delay slots and branch hints

Branch instructions pose challenges of nightmarish diffi-

culty for computer architects. Branch delay slots and branch

hints are two ISA-exposed techniques intended to mitigate

such difficulties. Neither of these techniques are considered

appropriate any longer, as engineers found better solutions—

transparent ones, to be clear.

A branch delay slot refers to one or more instructions after

a branch which are still executed regardless of whether the

branch is taken. This gives the processor some extra work to

do when it would otherwise be waiting for the pipeline to refill.

The MIPS and SPARC architectures, among a few others,

employ the technique. This practice has been abandoned in

modern architectures as it is better handled by increased

aggressiveness and improved speculation in the processor

front-end.

Branch hints are annotations in the instruction stream that

indicate a branch’s expected bias. They could be encoded in

normal branch instructions or in no-ops or prefixes. Their in-

tent is to reduce front-end stalls due to branch mispredictions.

The useful life of this concept was similarly short: since condi-

tional branch predictors perform better than static predictions,

these branch hints are ignored in nearly all cases. Furthermore,

such hints may increase code size, as an example, it costs

1 byte on x86) and because the processor must decode the

instruction to respond to the hint, a small stall is unavoidable

for a cold taken branch. The best practice is to make the fall-

through code path the common case. For loop back-edges,

cold backwards branches are often predicted taken in modern

designs anyway. This way I$ resources are conserved and stalls

due to cold front-end components such as the BTB and branch

predictor are minimized. As further evidence, consider that

GCC’s response to branch hint intrinsics is to reorder code,

but not emit branch hints.

B. Arm ISA’s excepting instruction offsets

From at least version four of Arm’s 32-bit ISA, now dubbed

AArch32, when an exception is taken from user to supervisor

privilege, the PC at the time of the fault is stored in the

Link Register with an offset that depends on the type of

exception. How could such a design come about? A natural

hypothesis adopted by the present authors is that the initial

implementation of the architecture in fact applied no offset

at all; rather, the behavior was merely a timing artifact of

how much further ahead the fetch stage’s PC would be

when the exception was detected later in the pipeline. One

might say that exceptions were not precise in the original

architecture, but could be made precise with software—a very

RISC-like compromise! Over twenty years later, this imprecise

exceptions behavior still remains for backwards compatibility.

For exception behaviors introduced later, the Link Register

value is completely precise.

This is yet another example of an architecture exposing a

transient microarchitectural detail in the ISA. Unfortunately,

like so many such well-intentioned compromises made early

in the life of an ISA, it changed the trajectory by which

future versions of the ISA had to match, whether or not

the implementation congruence still existed, the probability

of which tends to only ever decrease with time. Despite its

minor severity, this quirk demonstrates the impact of choosing

an expedient engineering solution visible to the machine’s

interface: in all likelihood, the interface-level decision is

irreversible, but the next product iteration could take nearly

any desirable approach behind the interface.

C. Intel SIMD extensions

While the x86 ISA has many examples of abandoned,

vestigial features, its long history of SIMD extensions offers

a lesson of a different sort. In particular, consider the many

different ways one might encode integer addition of 32-bit

words: starting from a single scalar ADD instruction, the

PADDW instruction provided two-, four-, eight-, and sixteen-

wide integer addition in the subsequent MMX, SSE2, AVX,

and AVX-512 extensions, respectively.

Clearly the philosophy being demonstrated is similar to

that of RISC, with the ISA directly referring to specific

implementation details, such as the width of the vector unit

and a register file sized to store vectors of that length.



The Cray-1 architecture [16], by contrast, represents a

smoother evolutionary path, as it expresses vector computa-

tions of arbitrary length. A computation thus encoded needs

no re-encoding when a later implementation provides more

advanced capabilities, nor would said implementation need

any extensions to its decoding circuitry. We offer this as

an example of a weakness of the RISC approach, where

directly exposing the capabilities of the latest machine revision

seems very important in the short term, then often becomes

regrettable baggage for all parties involved.

IV. THE LOAD-STORE LEGACY

A. Architecture and microarchitecture

Over the last half-century, there have been many attempts

to redefine the relationship between architecture and microar-

chitecture. With the premise that the MIPS philosophy strikes

some middle ground, then the extremes are formed by the

likes of Transport Triggered Architecture (TTA) [13] and at

the other end of the spectrum the Register-less Architectures

(RLA) [17]. The TTA philosophy is that the programmer or

compiler can decide exactly what instructions go to which

functional units more efficiently than the microarchitecture

can. As an example, taken to the extreme, this means that

the instruction stream itself is devoid of arithmetic logic

unit (ALU) operations and consists solely of data movement

operations to locations that are the functional units. This

directly exposes the microarchitecture itself, making binaries

extremely non-portable. RLAs on the opposite end of the

scale often start with a RISC-like base and remove the

register moves. In theory, today’s high speed caches are close

to the speed of the register file. In a sense, the registers

themselves are simply another smaller cache that is managed

via compiler instructions which are load/store operators. The

idea of the RLA is that instead of using load-to-register before

computation, use the memory address itself directly (with

appropriate concessions made for things like stack pointers,

etc.). While demonstrating some performance advantages over

register architectures, the potential for variable length instruc-

tion encoding and the resulting size of the binary (large), the

concept of RLA has yet to become mainstream.

B. Memory-to-memory architecture

Patterson and Hennessy [18] state that an ISA should have a

small number of operands that reference fast register memory.

The first argument given for limiting the number of registers is

the ability to clock these memories high enough to be effective.

Secondly the authors reference the nice power of two encoding

that 32 registers provide within the encoding space. This, how-

ever, hasn’t stopped architectures from increasing the number

of architected registers (as high as 128 for Itanium [19]). Many

have advocated for so called “registerless” architectures which

ostensibly encode memory addresses as operands for each

instruction. The authors of this paper chose the phrase “so

called” because most implementations of “registerless” archi-

tectures still employ fast registers, they simply hide them from

the exposed programmer interface, choosing instead to manage

the register space within the microarchitecture. If the register

mapping problem [20] is viewed as simply solving a temporal

encoding efficiency problem, then the memory-to-memory

architectures can be viewed as having infinite registers (mov-

ing the encoding overhead to the microarchitecture) whereas

the register-memory architectures can be viewed as having a

very limited fast memory space extended by main memory

(essentially a scratch-pad memory optimized by the compiler).

The consequence of encoding a larger number of registers,

as large as the addressable memory space (as in memory-to-

memory architectures) is that the instruction encoding must

be large as well to accommodate the memory addresses as

operands. Conversely, these architectures can eliminate explicit

load and store instructions which has the effect of reducing the

overall number of needed instructions. Memory-to-memory

architectures [21], such as PERL [17], embody this type of

“registerless” system, however, to date memory-to-memory

architectures have yet to catch on outside of embedded systems

(see ATmega16 as an example [22]). A potential advantage of

memory-to-memory architecture is that it enables architects to

innovate around the register management while removing the

long term limitations that fixing the number of registers within

the ISA can have (i.e. once it is in the ISA, it is essentially

permanent).

V. RAISING THE LEVEL OF ABSTRACTION

A. On tasting like microarchitecture

What does it mean to, as we assert tongue-in-cheek in the

title, “taste like” microarchitecture? As we have described up

to this point, the RISC philosophy espouses an ISA where

fundamental abstractions are shaped to match the outlines of

the microarchitecture. Adherence to this motivation continues

to the present day. Therefore the hardware-software interface

has a flavor, a taste, of microarchitecture. Is this so bad? In

a word, yes; we claim that this emphasis is simultaneously

antiquated, at odds with solutions to real problems facing our

field, and unnecessary. When considering the period of rapid

evolution that microarchitecture is about to face with the end of

lithography scaling, abstractions that are free from underlying

microarchitectural influence are critical to minimizing future

disruption.

B. Killer microseconds

The killer microsecond problem [23] is the observation that

decreasing I/O wait times are fast approaching the latency of

a context switch, thereby challenging the efficacy of time-

sharing itself, a technique used effectively for over a half cen-

tury [24]. For many decades, these delays were millisecond-

scale while the context switch cost was microsecond-scale.

How might the taste of an architecture be relevant to this

problem?

It is helpful to examine the activities undertaken by the

system on a context switch and how they are accomplished.

In a modern time-sharing system like Linux, the flow of

operations is as follows: the privilege level is changed to

supervisor, the user thread’s context (namely its architectural



state, i.e. the values stored in the register file(s)) is stored

to memory, a scheduler decides what thread to run next, the

context-swapping procedure is repeated to restore the context

of the chosen thread, and the privilege level is returned to user

level.

For clarity, we now point out the respective actors in the

previous paragraph, which was intentionally written in the

passive voice. Since our machines inherit the load-store legacy,

software, specifically the operating system, performs the fun-

damental register-copying task of context switching. In fact,

the ISA is defined such that the machine explicitly exists as a

separate entity that programs must be multiplexed in and out

of, rather than the machine model itself being defined as vir-

tual, or even self-virtualizing and self-multiplexing. Therefore

we have left software with the responsibility of encapsulating

independent computations into processes or virtual machines.

In the latter case, some architectural mitigations have been

implemented, but such solutions still leave much to be desired.

C. An encouraging direction: stateless ISAs

As we alluded to in section IV, the load-store legacy and

its register-centric machine model have alternatives worthy of

further examination. We will briefly describe a collection of

ideas in the direction of “registerless” architectures. To be

clear, we are interested primarily in the interface and how

it implicitly dictates implementations; we are not also pro-

claiming the obsolescence of register-based microarchitecture,

as most techniques there are more generally applicable.

Suppose we took the approach of mapping the register

file to memory, following Oehmke’s work on virtual context

architecture [25][26]. What we now find is that we have only

gone halfway: while the register state has an architecturally

defined backing store with a natural, hardware accelerate-able

scheme for context switching, we also unnecessarily separated

the natural working set of the program into two places in

memory, namely the register backing store and the stack.

It is not clear that this separation provides any real value

when considering the envisioned techniques for a stack-centric

“registerless” architecture (note that we do not consider this a

stack architecture, but rather a memory-memory architecture

with practical operand encoding).

One of the primary benefits of register operand encodings

is the clear dataflow relationship between producers and

consumers; only memory operations are subject to complex

disambiguation schemes, while instructions with only register

operands can proceed directly through register renaming to

get their physical register/dataflow tag. We will explore some

reasons why this advantage is likely overrated.

For maintaining the performance expectations established

by modern CPU architectures, we will focus on the abil-

ity to connect producers with consumers back-to-back, or

in consecutive clock cycles. This is not a feature provided

by registers, whether architectural or microarchitectural, but

rather an effective dataflow tagging scheme, a bypass network,

and one or more schedulers. We expect that the same is no

less achievable with only memory operands, albeit with the

burden of encoding and mapping dataflow via tags/registers

now squarely in the realm of microarchitecture.

Starting in the 1990’s, a series of studies has showed

that memory-borne dataflow is quite predictable: Franklin and

Sohi’s work in the context of Multiscalar [27], Moshovos and

Sohi’s [28] and Tyson and Austin’s [29] simultaneously pub-

lished studies on memory renaming, Chrysos and Emer’s store

sets [30], Sha, Martin, and Roth’s Store Queue Index Predic-

tion (SQIP) proposal [31], and others. From this we conclude

that memory renaming is a promising approach to achieve

equivalent dataflow tagging. Just as static solutions like branch

hints were obviated by dynamic prediction, perhaps register

encodings will eventually see a similar obsolescence.

But what should we expect of the greatly increased memory

references that would normally be register operands? Here we

gently note that register operands must be “well-behaved” by

definition; if it was possible for the data to be aliased through

memory, the compiler would be forced to not persist the value

in a register in the first place. So in effect, by encoding such

operands via (e.g.) stack offsets, we would only increase the

overall predictability of memory dependencies, and most of

these dependencies would be obvious through known methods.

We call the ultimate endpoint of this approach a stateless

ISA, i.e. an ISA defined strictly in terms of state transitions

in the system memory, with the computational device having

no external state of its own. As such an architecture can

use cache coherence to lay claim to a subset of memory

and realize these transitions using the highest performance

methods possible, the same aspect also directly implies that

task switching is simply a matter of caching. This is promising

for far more than just the killer microsecond problem. As we

envision future heterogeneous systems out of necessity, the

cost in time and energy of coordinating computations across

various computational devices has a first order impact on the

value derived from their differentiated attributes. The killer

microsecond problem is just one simple example of how the

overhead of context switching represents a sort of fundamental

constant; lowering this constant will impact other aspects of

system efficiency.

D. The hyper-taste

Our main thrust has been to argue that ISAs have an

outmoded emphasis on microarchitectural concerns, noting

that a great many microarchitectural techniques have been

devised to transparently solve these problems to great effect.

We should instead consider how to be more helpful to the con-

sumers of our interface. Looking upwards in the system stack,

the first immediate consumers of the architecture abstraction

are hypervisors, virtual machine monitors, microkernels, and

operating systems. How might we provide acceleration of

their operations? What might an architecture with a taste

of hypervisor consist of? How might we provide easy-to-

use heterogeneous computation without forcing these software

layers to continually adapt to our innovations?



VI. CONCLUSION

Many ideas proposed for the original MIPS architecture

did not catch on, and we argue that overall, the seminal

MIPS embodiment of the RISC philosophy provides many

examples of what not to do in ISA design. However, it

was not just the specific techniques that were flawed, but

rather we posit that the real flaw is viewing hardware details

exposed to the ISA as beneficial rather than, as we have

argued, disadvantageous. From this perspective, practically all

known ISAs have exposed implementation details to some

degree, but the RISC philosophy’s emphasis on exposing the

microarchitecture in the name of performance sacrifices the

future for the present.

Another perspective is that leaving a task to software is

often a sound technical decision and conveniently allows

further explorations on different solutions. Once a great deal

of investment has been made in the software, however, it

has proved difficult to change the interface despite potential

advantages.

The lasting legacies of the RISC movement are simpler

instructions intended to map directly onto hardware and load-

store memory architecture. These attributes are appropriate

for the microcode and µISA layer, but are not necessarily

the right level of abstraction for a widely targetable ISA. We

instead advocate an investigation into ISAs that say as little as

possible, ideally nothing, about their implementation. This re-

partitioning of responsibilities between hardware and software

would provide not only maximum flexibility over time, but

would allow more diversity of implementations, supporting

our imminent and foreseeable needs for heterogeneous com-

pute [32] in the post-Moore, post-Dennard era.

ACKNOWLEDGMENT

The authors would like to thank Reid McKenzie, Chad

Wellington, Akanksha Jain, and the anonymous reviewers for

their detailed and insightful feedback.

REFERENCES

[1] J. Hennessy, N. Jouppi, F. Baskett, and J. Gill, “MIPS: a VLSI processor
architecture,” in VLSI Systems and Computations. Springer, 1981, pp.
337–346.

[2] J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson, T. Kistler,
A. Klaiber, and J. Mattson, “The transmeta code morphing software:
using speculation, recovery, and adaptive retranslation to address real-
life challenges,” in Proceedings of the International Symposium on Code

Generation and Optimization. IEEE Computer Society, 2003, pp. 15–
24.

[3] A. Z. D. Herman, L. Wagner, and A. Zakai, “asm.js–working draft–18
august 2014,” 2014.

[4] WebAssembly. [Online]. Available: webassembly.org
[5] M. Seaborn and T. Dullien, “Exploiting the dram rowhammer bug to

gain kernel privileges,” 2015.
[6] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,

S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” ArXiv e-prints, Jan. 2018.

[7] W. Allcorn, The Maginot Line 1928–45. Bloomsbury Publishing, 2012.
[8] H. T. Datenschutz and D. Pataky, “Intel management engine,” 2017.
[9] M. Ermolov and M. Goryachy, “How to hack a turned-off computer,

or running unsigned code in intel management engine,” in Black Hat

Europe 2017.

[10] P. Koppe, B. Kollenda, M. Fyrbiak, C. Kison, R. Gawlik, C. Paar,
and T. Holz, “Reverse engineering x86 processor microcode,” in 26th

USENIX Security Symposium, 2017.
[11] Gcc, the gnu compiler collection. [Online]. Available: gcc.gnu.org
[12] The llvm compiler infrastructure. [Online]. Available: llvm.org
[13] H. Corporaal, “Design of transport triggered architectures,” in Proceed-

ings of 4th Great Lakes Symposium on VLSI, 1994, pp. 130–135.
[14] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim,

M. Frank, P. Finch, R. Barua et al., “Baring it all to software: Raw
machines,” Computer, vol. 30, no. 9, pp. 86–93, 1997.

[15] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, N. Ran-
ganathan, D. Burger, S. W. Keckler, R. G. McDonald, and C. R.
Moore, “TRIPS: A polymorphous architecture for exploiting ILP, TLP,
and DLP,” ACM Transactions on Architecture and Code Optimization

(TACO), vol. 1, no. 1, pp. 62–93, 2004.
[16] R. M. Russell, “The CRAY-1 computer system,” Communications of the

ACM, vol. 21, no. 1, pp. 63–72, 1978.
[17] P. Suresh and R. Moona, “Perl-a registerless architecture,” pp. 33–40,

Dec 1998.
[18] D. A. Patterson and J. L. Hennessy, Computer Organization & Design:

The Hardware/Software Interface, Fourth Edition. Morgan Kaufmann
Publishers, Inc.

[19] S. D. Naffziger, G. Colon-Bonet, T. Fischer, R. Riedlinger, T. J.
Sullivan, and T. Grutkowski, “The implementation of the Itanium 2
microprocessor,” IEEE Journal of Solid-State Circuits, vol. 37, no. 11,
pp. 1448–1460, 2002.

[20] G. J. Chaitin, “Register allocation & spilling via graph coloring,” in
ACM Sigplan Notices, vol. 17, no. 6. ACM, 1982, pp. 98–105.

[21] G. J. Myers, “The case against stack-oriented instruction sets,”
SIGARCH Comput. Archit. News, 1977.

[22] 8-bit avr microcontroller with 16k bytes in-system programmable flash.
http://www.atmel.com/images/doc2466.pdf. Accessed December 2017.

[23] L. Barroso, M. Marty, D. Patterson, and P. Ranganathan, “Attack of the
killer microseconds,” Commun. ACM, vol. 60, no. 4, pp. 48–54, Mar.
2017.

[24] F. J. Corbató, M. Merwin-Daggett, and R. C. Daley, “An experimental
time-sharing system,” in Proceedings of the May 1-3, 1962, Spring Joint

Computer Conference, 1962, pp. 335–344.
[25] D. W. Oehmke, N. L. Binkert, T. Mudge, and S. K. Reinhardt, “How to

fake 1000 registers,” in Proceedings of the 38th annual IEEE/ACM In-

ternational Symposium on Microarchitecture. IEEE Computer Society,
2005, pp. 7–18.

[26] D. W. Oehmke, Virtualizing register context. University of Michigan,
2005.

[27] M. Franklin and G. S. Sohi, “ARB: a hardware mechanism for dynamic
reordering of memory references,” IEEE Transactions on Computers,
vol. 45, no. 5, pp. 552–571, May 1996.

[28] A. Moshovos and G. S. Sohi, “Streamlining inter-operation memory
communication via data dependence prediction,” in Proceedings of the

30th Annual ACM/IEEE International Symposium on Microarchitecture,
ser. MICRO 30, 1997, pp. 235–245.

[29] G. S. Tyson and T. M. Austin, “Improving the accuracy and performance
of memory communication through renaming,” in Proceedings of the

30th Annual ACM/IEEE International Symposium on Microarchitecture,
ser. MICRO 30, 1997, pp. 218–227.

[30] G. Z. Chrysos and J. S. Emer, “Memory dependence prediction using
store sets,” in Proceedings of the 25th Annual International Symposium

on Computer Architecture, 1998, pp. 142–153.
[31] T. Sha, M. M. K. Martin, and A. Roth, “Scalable store-load forwarding

via store queue index prediction,” in Proceedings of the 38th Annual

IEEE/ACM International Symposium on Microarchitecture, ser. MICRO
38, 2005, pp. 159–170.

[32] E. S. Chung, P. A. Milder, J. C. Hoe, and K. Mai, “Single-chip hetero-
geneous computing: Does the future include custom logic, FPGAs, and
GPGPUs?” in Proceedings of the 43rd Annual IEEE/ACM International

Symposium on Microarchitecture, 2010, pp. 225–236.


