
Deadlock-free Buffer Configuration for Stream Computing

Peng Li
Jonathan Beard
Jeremy Buhler

Peng Li, Jonathan Beard, and Jeremy Buhler. “Deadlock-free Buffer
Configuration for Stream Computing,” in Proc. of 6th Int’l Workshop on
Programming Models and Applications for Multicores and Manycores
(PMAM), February 2015, pp. 164-169.

Dept. of Computer Science and Engineering
Washington University in St. Louis

Deadlock-free Buffer Configuration for Stream Computing

Peng Li Jonathan Beard Jeremy Buhler
Dept. of Computer Science and Engineering

Washington University in St. Louis
St. Louis, MO 63130, USA

{pengli, jbeard, jbuhler}@wustl.edu

ABSTRACT

Stream computing is a popular paradigm for parallel and distributed
computing, which features computing nodes connected by first-in
first-out (FIFO) data channels. To increase the efficiency of com-
munication links and boost application throughput, output buffers
are often used. However, the connection between the configuration
of output buffers and application deadlocks has not been studied.
In this paper, we show that bad configuration of output buffers can
lead to application deadlock. We prove necessary and sufficient
condition for deadlock-free buffer configurations. We also propose
an efficient method based on all-pair shortest path algorithms to de-
tect unsafe buffer configurations. We also sketch a method to adjust
an unsafe buffer configuration to a safe one.

Categories and Subject Descriptors

F.1.2 [COMPUTATION BY ABSTRACT DEVICES]: Modes of
Computation; H.3.4 [SYSTEMS AND SOFTWARE]: [Distributed
Systems]

Keywords

Stream Computing, Buffer Configuration, Deadlock Avoidance

1. INTRODUCTION
Stream computing is a paradigm of parallel and distributed com-

puting featuring computing nodes connected by data channels. Each
node runs an application module and processes data in first-in first-
out (FIFO) order. Data channels deliver data, also in FIFO order.
The sequence of data items delivered by a data channel is called a
data stream. Figure 1 is a stream computing system for approxi-
mating population variance, which can be calculated with the fol-
lowing formula [30]:

σ
2 = z2 − z

2
(1)

where z is the average of the N values.
The source node u duplicates input data to v and w, which com-

pute z and z2 respectively for each data set. These quantities are
then merged at node x to compute estimated variance values.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

PMAM ’15, February 7-8, 2015, San Francisco Bay Area, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3404-4/15/02 ..$15.00.

http://dx.doi.org/10.1145/2712386.2712403.

Figure 1: A stream computation for variance.

This simple example demonstrates two benefits of stream com-
puting. First, while benefiting from parallel execution, the appli-
cation developer can think sequentially when authoring each ap-
plication module, which is very helpful since most of today’s pro-
grammers still prefer sequential programming. Second, the FIFO
order of data delivery and data processing makes it possible to rea-
son about formal properties of streaming applications, such as the
fix-point property [13] and deadlock freedom [4, 18].

While in theory we can think each data channel as a single (bounded)
buffer, in practice, it usually consists of an output buffer visible
only to the sender, an input buffer visible only to the receiver, and
possible transmission buffers in between. The use of output and
input buffers are usually for performance considerations since each
send or receive operation incurs some fixed overheads. By buffer-
ing some data items locally and sending them in one operation, we
can amortize overhead per data item and thus improve throughput,
which has been observed not only in streaming applications[24, 27]
but also in other domains [25, 26]. This “batching” idea has been
implemented in some streaming computing systems [11, 31]. Note
amortizing communication overhead is just one way of improving
throughput of streaming application, which can also be optimized
in many other ways [12, 19].

In addition to performance, output buffers might also impact ap-
plication correctness. More specifically, they can lead to potential
application deadlocks. To the best of our knowledge, the dead-
lock implications of output buffers have not been studied before.
In this paper, we will show that in typical streaming applications, if
output buffers are not configured appropriately, deadlock can hap-
pen during application execution. We will present necessary and
sufficient conditions that make a buffer configuration vulnerable to
deadlocks. We also provide an algorithm to check whether a buffer
configuration is freedom of deadlocks.

2. MODEL DESCRIPTION
In this section, we present the stream computing model we will

164

use in this paper. The model is very straightforward and easy to
understand. If the reader is familiar with the Synchronous Dataflow
(SDF) [15, 16], our model is essentially an acyclic homogeneous
SDF, where each port has a data rate of one.

An application is represented as a directed acyclic graph (DAG)
topology where modules and channels are vertices and edges, re-
spectively. We do not consider feedback channels in this paper,
but we may consider it in future work. [28] shows that feedback
channels are uncommon in stream computing applications.

As in ordinary streaming applications, data delivery and data
processing are in FIFO order. We add a data rate restriction that
each node consumes exactly one data item, or token, from each in-
put channel (if the node is not a source node) and producesexactly

one data item on each output channel (if the node is not a sink
node), regardless of data content. Data filtering and dynamic data
rates are not allowed.

Each channel q has a static buffer size, denoted as |q|, which
is determined when the application is constructed and stays un-
changed during application execution. Each channel has an out-
put buffer, which is part of the channel buffer; hence, the size of
the output buffer, denoted as |q|o, is smaller than the total chan-
nel buffer. Remember that data in the output buffer is invisible to

the receiver. The sender can choose to flush the output buffer and
make the data visible to the receiver (after some finite time) at any
time (e.g. due to some control events [17, 22]); however, if the out-
put buffer becomes full, the sender must flush it. If the rest of the
channel buffer does not have enough capacity to buffer all data to
be flushed from the output buffer, it accepts as much data as it can,
and the remaining data remains in the output buffer.

If the input data stream is bounded, then after the source node
finishes reading all input data, it sends an end-of-stream (EOS) to-
ken to downstream receivers to flush any remaining data in output
buffers. All nodes receiving the EOS token must propagate it, so
that it eventually reaches the sink node.

If a channel is full, neither the output buffer nor the rest of the
buffer can accept any data item, and the sender is blocked; if the
receiver does not see input at one of its input channels, the receiver
is blocked. Note that even if a channel is not empty, e.g. data are
in the output buffer, the receiver could still be blocked because the
data in the output buffer is not available to the receiver. Blocking
on non-empty channels is a key factor in the deadlocks we study
below.

3. DEADLOCK CHARACTERIZATION

u x

w

v

Full channel

Data in
output buffer

Figure 2: A deadlock due to bad output buffer configuration.

Both uw and wx have an output buffer size of 8, so output

buffers are not flushed.

We now demonstrate how a deadlock can happen under in the
presence of output buffers. As an example, consider Figure 2,

which has a topology similar to Figure 1. The buffer configura-
tion is |uv| = 4, |vx| = 4, |uw| = 16, |uw|o = 8, |wx| = 16, |wx|o
= 8; we ignore |uv|o and |vx|o for simplicity. After u sends 4 data
items to both v and w, it flushes the output buffer of uw due to
some control event although the buffer is not full. It then sends an-
other 4 data items to both v and w, but this time it does not flush
uw’s output buffer, and wx’s output buffer is not flushed, either.
Now uv and vx are full, blocking u and v, respectively; the output
buffers of uw and wx each holds 4 data items, making w and x see
no data on uw and wx, respectively, so w and x are also blocked.
None of the four nodes can make any progress, yet there are data
unprocessed in the system, so the application is deadlocked.

The buffer configuration for this simple topology is obviously a
bit contrived, and it is easy to identify deadlock risk within it. More
complex topologies, however, are not so straightforward to analyze.
We therefore begin by identifying those topologies in which a dead-
lock can occur.

Before proceeding to the analysis of properties that lead to poten-
tial deadlocks (or freedom of deadlock), let us clarify definitions.
Many of the following definitions have been presented in [18].

DEFINITION 3.1. (Blocking Relation) If a node v is waiting for

input from an upstream neighbor u, or if v is waiting to send output

to a downstream neighbor u because the channel buffer between

them is full, we say that u blocks v, denoted u ⊣ v. If there exists a

sequence of nodes v1 . . . vn such that vi ⊣ vi+1 for 1 ≤ i < n, we

write v1 ⊣
+ vn.

DEFINITION 3.2. (Deadlock) A system is said to deadlock if

no node in the system can make progress, but some channel in the

system still retains unprocessed data items (so that the computation

is incomplete).

THEOREM 3.3 (DEADLOCK THEOREM). A system eventu-

ally deadlocks if and only if, at some point in the computation, there

exists a node u s.t. u ⊣+ u.

PROOF. (←) Suppose that at some point in the computation,
there is a node u such that u ⊣+ u. Because a blocked node can-
not make progress, no node on the cycle involving u can make
progress. Hence, once the blocking cycle occurs, it will remain in-
definitely. Moreover, not every pair of successive nodes in the cycle
can be linked by an empty channel; otherwise, we would have that
u is waiting for input from u, which is impossible because the graph
of computing nodes is a DAG. Hence, the blocking cycle contains
at least one full channel, which means there are unprocessed data
items, and so the system is deadlocked.

(→) Suppose that u ⊣+ u does not hold for any node u at any
point in the computation. We show that, as long as there is any
data in the system, some node is able to make progress; hence, the
computation will never halt with unprocessed data on a channel.

At any point in the computation, either every node with input
data can make progress, or some such node u is blocked. Let H
be the directed graph obtained by tracing all blocking relationships
outward from u, such that there is an edge from v to w iff v ⊣ w.
By assumption, H has no cycles and is therefore a DAG. Let v0
be a topologically minimal node in H , which is not blocked by
any node. If v0 has data items on its input channels, it is able to
consume them and so make progress. Otherwise, v0’s input chan-
nels are all empty, so that it cannot block any upstream neighbors.
Moreover, since v0 itself is not blocked, either it is a source node
that can advance its computation index by spontaneously producing
data items, or it must have received the EOS marker and so cannot
block any downstream neighbors (which contradicts v0’s presence
in H). Conclude that v0 is able to make progress, as desired.

165

DEFINITION 3.4. (Blockwise (not clockwise) and Counterblock-

wise) Let C be a cycle of blocked nodes v1 . . . vn, such that v1 ⊣
+

vn and vn ⊣ v1. The direction of increasing index on C is called

blockwise, while the opposite direction is counterblockwise.

A channel on C between vi and vi+1 may be oriented either
blockwise from vi to vi+1 or counterblockwise from vi+1 to vi.
Because vi ⊣ vi+1, a blockwise channel on a blocking cycle is

always empty, while a counterblockwise channel is always full. For
example, in Figure 2, uw and wx are blockwise channels while uv
and vx are counterblockwise channels.

We notice that not all systems can have deadlocks. For exam-
ple, a system with just two nodes connected by one channel will
never deadlock. However, even quite simple systems, such as one
with just two nodes connected by two parallel data channels, can
deadlock.

DEFINITION 3.5. (Potential Deadlock) A system with finite buffer

sizes on all channels has a potential deadlock if, given the node

topology and channel buffer configuration, including output buffer

configuration, there exist input streams and histories of data flushes

at each node such that a deadlock is possible.

DEFINITION 3.6. (Undirected Cycle) Given a system abstracted

as a DAG G, an undirected cycle of G is a cycle in the undirected

graph G′ that is the same as G except that all edge directions have

been removed.

For example, in the graph of Figure 2, uvxw is an undirected cycle
that can become blocking. We now show that in a general DAG,
every undirected cycle can become blocking.

CLAIM 3.7. Given a system S abstracted as a DAG G, S has

potential deadlocks only if G has an undirected cycle.

PROOF. Note that the claim says an undirected cycle is only a
necessary condition for deadlocks. Indeed, if there is no undirected
cycle, there cannot be a blocking cycle, hence deadlocks cannot
happen.

THEOREM 3.8. If every channel has an output buffer of size

zero, which means every output data item is guaranteed to be visi-

ble to the receiver after finite time, then the system cannot deadlock.

PROOF. The system is equivalent to a non-filtering system de-
scribed in [18]. According to Theorem 3.1 in [18], the system is
freedom of deadlocks.

According to Theorem 3.8, if we do not use an output buffer,
the system cannot deadlock. But this “write-through” style of data
delivery is not good for throughput because of the delivery over-
head per data item. Generally speaking, a large output buffer can
improve data throughput (though it might increase data latency), so
how large should we set the output buffer so that the system is still
deadlock-free? In other words, given a buffer configuration, can we
tell if the system is deadlock-free? If so, how can we change the
buffer configuration so that the system is deadlock-free? We will
answer these questions in the next couple of sections.

4. DEADLOCK AVOIDANCE
To avoid the deadlocks, one solution is using a timer for each

node (or each channel). When the timer expires, all data in the cor-
responding buffer(s) must be flushed. This solution works because
it avoids buffering data indefinitely. However, choosing appropri-
ate length for timers is non-trivial. Too long or too short timers can
degrade application performance.

We avoid using timers by setting safe buffer sizes. We argue that
by setting appropriate total channel buffer sizes and output buffer
sizes, a streaming computing system under the conditions we have
specified can never deadlock.

4.1 Conditions for Deadlock-free Buffer Con-
figuration

We will prove that the space of safe buffer configurations for a
given application graph G is precisely defined by a set of linear
constraints on these total buffer sizes and output buffer sizes. We
introduce two constraints for each undirected cycle in G, which
together ensure that this cycle cannot become a blocking cycle for
more than finite time.

tk

ti

t1
s1

si

si+1

pe1

pf1

pf(i-1)

pei

pfi

pe(i+1)

pek

pfk

Figure 3: The division of an undirected cycle.

To describe the necessary constraints, consider Figure 3, which
illustrates the division of an undirected cycle C in an application.
Channels on this cycle are directed either clockwise or counter-
clockwise. Given such an undirected cycle C, suppose the set of
clockwise channels is H1 and the set of counterclockwise channels
is H2. Let |q|o be the size of the output buffer for channel q, and
set |q|′o = |q|o − 1. Let |q| be the total buffer size of q.

We establish the following inequality constraints for cycle C:

Σq∈H1
|q|

′

o < Σq∈H2
|q| (2)

Σq∈H2
|q|

′

o < Σq∈H1
|q|. (3)

Besides the above constraints, for each channel q, the following
constraint is also naturally enforced:

0 ≤ |q|
′

o (4)

|q|
′

o < |q|. (5)

Note that if |q|o = 0, which means no output buffer is associated
with q, we let |q|′o be 0 rather than−1. The reason is that the effect
of |q|o = 0 is same as that of |q|o = 1 as no data item will ever
stay in the output buffer.

An application graph may have more than one undirected cycle,
each of which generates a pair of constraints as described. The
union of all these constraints defines the space of safe buffer con-
figurations.

THEOREM 4.1. Inequalities 2, 3, 4, and 5 together are both

necessary and sufficient to guarantee deadlock freedom the given

stream computing system.

PROOF. “Necessary” means that if any of the constraints are vi-
olated, the system is at risk of deadlock; “sufficient” means that by
following the constraints, the system is guaranteed to be freedom
of deadlocks.

166

Instead of proving the theorem from scratch, we map the system
in this paper, denoted as Γ, to the one described in Section III.C
of [21], denoted as Φ, which proves that a dummy message sched-
ule constrained by a set of linear inequalities can avoid deadlocks
caused by data filtering. We set |q|′o for q in Γ as the dummy inter-
val [q] (defined in [21]) in Φ. Note that Inequalities 4 and 5 cannot
be violated, otherwise the buffer configuration is impossible.

Suppose Γ deadlocks; then there must be a blocking cycle with
some full channels and other channels with unflushed output buffers.
We construct a data history in Φ such that all node receive the same
history of data, all channels corresponding to full channels in Γ
do not filter, and other channels on the cycle filter data items corre-
sponding to the ones in output buffers. In Γ, we get a blocking cycle
with alternate full paths and empty paths, which means a deadlock.

Suppose Φ deadlocks; then there is a blocking cycle with al-
ternate full paths and empty paths. WLOG, we assume that full
channels have not filtered any data. We let each node in Γ receive
the same sequence of data as the corresponding node in Φ does. No
output buffer is flushed unless it is full. When the deadlock happens
in Φ, the filtered data items are corresponding to the data items in
the output buffer in that they are invisible to the receiver. Since the
filtering history causes a deadlock in Φ, the invisibility caused by
output buffers causes a deadlock in Γ.

Because the dummy intervals constrained by Inequalities 2 and 3
are sufficient for avoiding deadlocks, inequalities 2, 3, 4 and 5 are
both sufficient and necessary for avoiding deadlocks caused by bad
buffer configurations.

To verify whether a set of buffer configurations is freedom of
deadlock or not, we can enumerate all undirected cycles and check
whether any of the inequalities is violated. However, the number of
undirected cycles could be exponential to the graph size. For exam-
ple, by turning an undirected complete graph into a DAG, we can
have 2N undirected cycles, where N is the number of vertices. Ver-
ifying the inequalities by enumerating all undirected cycles could
be very expensive, so we next present an efficient algorithm to ver-
ify the safety of buffer configurations.

4.2 Verifying Safety of Buffer Configuration
We sketch a method to verify the safety of a given set of buffer

configurations, which involves checking for non-positive cycles on
a specially defined graph.

DEFINITION 4.2. (OB-graph and Mirror Edge) Given a DAG

G = (V,E) for a streaming system and its output buffer config-

urations, we create a new graph G′ = (V,E′). For each edge

e = uv ∈ E, we create two edges on G′: e and e′ = vu (Note

the direction of e′). The weight of e′ is −|uv|′o G′ is the OB-graph

(short for output-buffer graph) for G, and e′ and e are mirror edges
of each other.

The careful reader will notice that the assignment of the weight
|e′| is related to the inequalities defined in the previous section.

CLAIM 4.3. Given a dataflow graph G for a streaming system

and its OB-graph G′, Inequalities 2, 3, 4 and 5 hold for every sim-

ple undirected cycle in G iff every cycle in G′ has a positive total

weight.

PROOF. (←) A directed cycle C′ in G′ is created from an undi-
rected cycle C in G. If the inequalities hold for C, C′ has a positive
weight, since the absolute value of the sum of negative edges is less
than the sum of the positive edges.

(→) Suppose one of the inequalities fails to hold for some undi-
rected cycle C in G. WLOG, suppose Inequality 2 is violated,

which means the sum of |q|′o of clockwise channels is at least the
sum of buffer size of counterclockwise channels. Let C′ be the
directed cycle created with clockwise negative edges and counter-
clockwise positive edges based on C. The absolute value of the
total weight of negative edges on C′ is at least the total weight of
its positive edges, so C′ has a non-positive total weight.

To check whether there is a non-positive cycle, we can run an all-
pairs shortest path algorithm (e.g. the Floyd-Warshall algorithm [10,
29]) on G′, as described in Algorithm 1. A non-positive distance
from a vertex to itself indicates the existence of a non-positive cy-
cle. With the classic Floyd-Warshall algorithm, we can check for
non-positive cycle in O(N3), where N is the number of total nodes
in the stream computing system.

Algorithm 1: Checking for Non-positive cycle.

for i← 1 to n do

for j ← 1 to n do

if vivj ∈ E then
dij ← |vivj |

else
dij ←∞

for k ← 1 to n do

for i← 1 to n do

for j ← 1 to n do

if dij < dik + dkj then
dij ← dik + dkj

if dii ≤ 0 then
return True

return False

If a set of buffer configuration is found to be unsafe, we can ad-
just the configuration to make it safe with some additional steps.
To be specific, if a non-positive path from a vertex to itself is dis-
covered, we pick some negative edges and increment its value (e.g.
from −8 to −4), which means shrinking the corresponding output
buffers, until the configuration is safe.

5. RELATED WORK
Some streaming computing models, such as the Kahn’s Process

Networks [13], assume infinite buffer capacity for each channel,
which is impractical. With bounded buffering capacity, setting ap-
propriate buffer sizes is important to both correctness and perfor-
mance of streaming applications. For models with static data rates,
such as the synchronous dataflow (SDF) [15, 16], it is possible to
compute a bounded-memory schedule (if there exists one) and as-
sign buffer sizes accordingly to guarantee freedom of deadlocks.
But for models with fully dynamic data rates, whether a bounded-
memory schedule exists is unknown [2, 3]. If the dynamic data
rate is limited to data-dependent filtering, it is possible to schedule
the application in bounded memory with the use of special control
messages [4, 18, 20, 21]. The flushing behavior is similar to the
control message in that they both make the sender’s output history
visible to the receiver. The method for determining buffer config-
uration in this paper is actually inspired by the scheduling of those
special messages.

Deadlocks in other distributed systems have also been studied in-
tensively. Chandy et al. classified deadlocks in distributed system
as communication deadlocks and resource deadlocks and proposed
detection algorithms for each type of deadlock [5, 6], but no pre-
vention mechanism is introduced. In packet-switched networks,
deadlock is an issue for routing algorithms. The network could
deadlock if the “waiting-for” relations form a blocking cycle, and

167

many routing algorithms have been designed to guarantee freedom
of deadlock while trying to maximize performance [7, 8, 9]. While
those deadlocks are related with blocking queues, their models did
not feature output buffers and how they could relate with dead-
locks. Deadlock avoidance has also been studied in queueing net-
works, where small queues could lead to deadlocks [14, 23]. In
contrast, small channel buffers alone without large output buffers
in our model do not cause deadlocks. To conclude, the deadlock
problem we study in this paper is a new and interesting one, which
has not been studied before.

6. CONCLUSION AND FUTURE WORK
In this paper, we showed the influence of output buffers on the

correctness of streaming applications. If output buffers are not con-
figured appropriately, the streaming application could have poten-
tial deadlocks. We proved the sufficient and necessary condition of
deadlock-free buffer configurations. We also proposed an efficient
method for verifying if a set of buffer configuration is deadlock-
free or not by using classic all-pair shortest path algorithms. If a
set of buffer configuration is not deadlock-free, we also provided
methods to change it to a deadlock-free one.

In future, there are several direction we plan to take. First, we
want to add directed cycles to our model. By allowing directed cy-
cles, deadlocks can be caused by all-full cycles or all-empty cycles.
Secondly, we plan to extend our model to general SDFs, where the
data rates are not necessarily 1 at each port. It would be more
promising if we can solve the output buffer configuration problem
for general SDFs. A third direction is comparing our approach with
the one that uses timers. Our approach does not need any timer, but
it prohibits certain buffer configurations; while the timer approach
allows arbitrary buffer configurations but the length of timer needs
to be carefully chosen to avoid performance degradation. We would
like to see which approach has better performance in applications
deployed with frameworks such as RaftLib [1].

7. ACKNOWLEDGMENTS
We sincerely thank the anonymous reviewers for their devoted

time and insightful comments. This work was supported by NIH
award R42 HG003225, NSF award CNS-0751212, and NSF award
CNS-0905368.

8. REFERENCES
[1] Jonathan C. Beard, Peng Li, and Roger D. Chamberlain.

Raftlib: A C++ template library for high performance stream
parallel processing. In Proceedings of Programming Models

and Applications on Multicores and Manycores, PMAM
2015, New York, NY, USA, February 2015. ACM. to be
published.

[2] Joseph T. Buck. Scheduling Dynamic Dataflow Graphs with

Bounded Memory Using the Token Flow Model. PhD thesis,
University of California, Berkeley, 1993.

[3] Joseph T. Buck. Static scheduling and code generation from
dynamic dataflow graphs with integer-valued control
streams. In Asilomar Conf. on Signals, Systems, and

Computers, pages 508–513, November 1994.

[4] Jeremy D Buhler, Kunal Agrawal, Peng Li, and Roger D
Chamberlain. Efficient deadlock avoidance for streaming
computation with filtering. In Proc. 17th ACM SIGPLAN

Symp. on Principles and Practice of Parallel Programming,
pages 235–246. ACM, 2012.

[5] K. M. Chandy and J. Misra. A distributed algorithm for
detecting resource deadlocks in distributed systems. In ACM

Symp. on Principles of Distributed Computing, pages
157–164, 1982.

[6] K. Mani Chandy, Jayadev Misra, and Laura M. Haas.
Distributed deadlock detection. ACM Trans. Comput. Syst.,
1(2):144–156, 1983.

[7] William J. Dally and Hiromichi Aoki. Deadlock-free
adaptive routing in multicomputer networks using virtual
channels. Parallel and Distributed Systems, IEEE

Transactions on, 4(4):466–475, 1993.

[8] William J Dally and Charles L Seitz. Deadlock-free message
routing in multiprocessor interconnection networks.
Computers, IEEE Transactions on, 100(5):547–553, 1987.

[9] José Duato. A new theory of deadlock-free adaptive routing
in wormhole networks. Parallel and Distributed Systems,

IEEE Transactions on, 4(12):1320–1331, 1993.

[10] Robert W. Floyd. Algorithm 97: Shortest path. Commun.

ACM, 5(6):345–, June 1962.

[11] Bingsheng He, Mao Yang, Zhenyu Guo, Rishan Chen, Bing
Su, Wei Lin, and Lidong Zhou. Comet: batched stream
processing for data intensive distributed computing. In
Proceedings of the 1st ACM symposium on Cloud computing,
pages 63–74. ACM, 2010.

[12] Martin Hirzel, Robert Soulé, Scott Schneider, Buğra Gedik,
and Robert Grimm. A catalog of stream processing
optimizations. ACM Computing Surveys (CSUR), 46(4):46,
2014.

[13] Gilles Kahn. The semantics of simple language for parallel
programming. In IFIP Congress, pages 471–475, 1974.

[14] S Kundu and Ian F. Akyildiz. Deadlock free buffer allocation
in closed queueing networks. Queueing Systems, 4(1):47–56,
1989.

[15] Edward A. Lee and David G. Messerschmitt. Static
scheduling of synchronous data flow programs for digital
signal processing. IEEE Trans. Comput., 36(1):24–35,
January 1987.

[16] Edward A. Lee and David G. Messerschmitt. Synchronous
data flow. Proc. IEEE, 75(9), 1987.

[17] Peng Li, Kunal Agrawal, Jeremy Buhler, and Roger
Chamberlain. Orchestrating safe streaming computations
with precise control. In International Workshop on Extreme

Scale Computing Application Enablement - Modeling and

Tools, in conjunction with ICPADS’14, December 2014.

[18] Peng Li, Kunal Agrawal, Jeremy Buhler, and Roger D.
Chamberlain. Deadlock avoidance for streaming
computations with filtering. In Proc. 22nd ACM Symp. on

Parallelism in Algorithms and Architectures, pages 243–252,
2010.

[19] Peng Li, Kunal Agrawal, Jeremy Buhler, and Roger D
Chamberlain. Adding data parallelism to streaming pipelines
for throughput optimization. In High Performance

Computing (HiPC), 2013 20th International Conference on,
pages 20–29. IEEE, 2013.

[20] Peng Li, Kunal Agrawal, Jeremy Buhler, Roger D.
Chamberlain, and Joseph M. Lancaster. Deadlock-avoidance
for streaming applications with split-join structure: Two case
studies. In IEEE Int’l Conf. on Application-specific Systems,

Architectures and Processors, pages 333–336, July 2010.

[21] Peng Li and J. Buhler. Polyhedral constraints for
bounded-memory execution of synchronized filtering
dataflow. In Data-Flow Execution Models for Extreme Scale

Computing (DFM), 2013, pages 29–37, Sept 2013.

168

[22] Peng Li and Jeremy Buhler. Improving performance of
streaming applications with filtering and control messages.
In Proceedings of the 23rd International Conference on

Parallel Architectures and Compilation Techniques, PACT
’14, August 2014.

[23] Jörg Liebeherr and Ian F Akyildiz. Deadlock properties of
queueing networks with finite capacities and multiple routing
chains. Queueing systems, 20(3-4):409–431, 1995.

[24] Björn Lohrmann, Daniel Warneke, and Odej Kao.
Massively-parallel stream processing under qos constraints
with nephele. In Proceedings of the 21st international

symposium on High-Performance Parallel and Distributed

Computing, pages 271–282. ACM, 2012.

[25] Lin Ma and Roger D. Chamberlain. A performance model
for memory bandwidth constrained applications on graphics
engines. In Proc. of Int’l Conf. on Application-specific

Systems, Architectures and Processors (ASAP), 2012.

[26] Lin Ma, Roger D. Chamberlain, Jeremy D. Buhler, and
Mark A. Franklin. Bloom filter performance on graphics
engines. In Proc. of Int’l Conf. on Parallel Processing, pages
522–531, 2011.

[27] Alexander Maxiaguine, Simon Künzli, Samarjit
Chakraborty, and Lothar Thiele. Rate analysis for streaming
applications with on-chip buffer constraints. In Proceedings

of the 2004 Asia and South Pacific Design Automation

Conference, pages 131–136. IEEE Press, 2004.

[28] William Thies and Saman Amarasinghe. An empirical
characterization of stream programs and its implications for
language and compiler design. In Int’l Conf. on Parallel

Architectures and Compilation Techniques, pages 365–376,
2010.

[29] Stephen Warshall. A theorem on boolean matrices. J. ACM,
9(1):11–12, January 1962.

[30] BP Welford. Note on a method for calculating corrected sums
of squares and products. Technometrics, 4(3):419–420, 1962.

[31] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter,
Scott Shenker, and Ion Stoica. Discretized streams:
Fault-tolerant streaming computation at scale. In
Proceedings of the Twenty-Fourth ACM Symposium on

Operating Systems Principles, pages 423–438. ACM, 2013.

169

