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Streaming Languages

StreamIt, Auto-Pipe, Brook, Cg,  S-
Net, Scala-Pipe, Streams-C and 

many others
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Optimization
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“Stream” is modeled as a Queue
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Streaming on Multi-core Systems

• Commodity multi-core timer availability and latency 
• Frequency scaling and core migration 
• Measuring modifies the application behavior

Problem: Accurate measurement is very difficult.  Is there 
a way to decide on a model without it.  
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We want good models for streaming systems 
on shared multi-core systems (i.e., a cluster)
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Expected Observed

Is there a pattern of minimal variation within the 
systems we’re running on?

Avg. Service Time = E[ X  ] + Error



SBS
Stream Based 

Supercomputing Lab
http://sbs.wustl.edu

Goal
Find a distribution that characterizes 
the minimum expected variation of a 

hardware and software system

Use this characterization to 
accept or reject models
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Process
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• Measurement!
• Workload definition!
• Find a distribution!
• Utilize the distribution to aid model selection
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Timer Mechanism
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Ask for Time

Receive Time

Timer Thread Code



SBS
Stream Based 

Supercomputing Lab
http://sbs.wustl.edu

Timer Mechanism
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Timer Thread

rdtsc clock_gettime
• x86 assembly 
• varying methods 

to serialize 
• relatively fast 
• multiple drift 

issues

• POSIX standard 
• relatively accurate 
• portable 
• slower than rdtsc
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Two Timing Choices
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NUMA Node Variations
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Minimize Variation
• Restricting timer to single core 

!
• Use the x86 rdtsc instruction with processor 

recommended serializers for each processor 
type 
!

• Keeping processes under test on the same 
NUMA node as timer 
!

• Run timer thread with altered priority to 
minimize core context swaps
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Best Case Execution Time Variation

• no-op instruction implemented in most processors 
!
• usually takes exactly 1 cycle 
!
• no real functional units are involved, so least 

taxing 
!
• variation observed in execution time should be 

external to process
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Data Collection
• no-op loops calibrated for various nominal 

times, tied to a single core and run 
thousands of times 

!
• Execution time measured end to end for 

each run, environment collected 
!
• Parameters include: 

Number of processes executing on core 
Number of context swaps (voluntary, 
involuntary) 
Many others
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Levy Distribution
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Execution Time Error 
( obs - mean )
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Levy Distribution
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Normal Distribution 
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Levy Distribution
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Gumbel Distribution
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Levy Distribution
• Truncation enables mean calculation, but 

requires fitting to each dataset to find where 
to truncate 

!
• The truncation parameters are correlated to 

both the number of processes per core and 
the expected execution time 

!
• Roughly linear relationship gives an 

approximate solution to truncation 
parameters without refitting
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Levy Fit
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Test Setup
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BQ1A

Question: Can we use an M/M/1 queueing model to 
estimate the mean queue occupancy of this system? 

!
Hypothesis:  Lower Kullback-Leibler (KL) divergence 

between expected and realized distribution is 
associated with higher model accuracy.
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Test Setup
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BQ1A

1. Dedicated thread of execution monitors 
queue occupancy 

2. Calculate the estimated mean queue 
occupancy using the M/M/1 model 

3. Calculate KL Divergence for the arrival 
process distribution using the truncated 
Levy distribution noise model
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Convolution with Exponential
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Conclusions
• The truncated Levy distribution can be used to 

approximate BCETV 
!
• The distribution of BCETV can be used as a tool 

to accept or reject a stochastic queueing model 
based on distributional assumptions 

!
• KL divergence between the expected and 

convolved distribution highly correlates with 
queue model accuracy
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Parting Notes
Slides available here:  

sbs.wust.edu  
!

Timer C++ template code: 
  http://goo.gl/ItJ3jP  

!

Test harness used to collect data:   
http://goo.gl/U1VG6N 
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