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Outline

* We introduce a simple model to estimate
throughput and inform buffering capacity

* The model is tailored to stream processing

* |s applicable to applications deployed on
heterogeneous architectures

* We empirically evaluate the proposed model
and discuss instances where it works and where

it might not .
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Stream Processing Intro - Kernel

streams [[ Output ]] Work( InputOne, InputTwo )
{

X = InputOne.get( ):;

Y = InputTwo.get( );

out = do something( X, Y );
Output.push( out );
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Stream Processing Intro - Kernel

l streams [[ Output ]] Work( InputOne, InputTwo )
2 A

3

4

5 | ) 7

6 Output.push( out );

7 }
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Stream Processing Intro - Streams

Kernel 2

Kernel | Kernel 3

Stream

Kernel 2
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Stream Processing Intro - Languages

® Academic Systems: Auto-Pipe, Brook, Cg,
S-Net, Streamlt, and Streams-C

® Commercial Systems: Impulse C and IBM’s
System S
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Stream Processing Intro - Mapping |
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How does our kernel perform on each compute resource?
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Stream Processing Intro - Mapping 3

multi-core A multi-core B
0] Bl «<—
/‘_’ - - /

Kernel | Kernel 3

Kernel 2

More allocation choices,
NUMA node A or B to Kernel 2
allocate stream.
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Stream Processing Intro - Mapping 3

multi-core B
— (_Y
B

Kernel | Kernel 3

» multi-core A
|

Kernel 2

I
B

More allocation choices,
NUMA node A or B to Kernel 2
allocate stream.

Stream Based Wasn

Supercomputing Lab A I .
http://sbs.wustl.edu UIIIVGI'SItY n StLOUIS

Saturday, August 17, 13



Stream Processing Intro - Mapping 3
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Application and Implementations
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A Hardware Mapping
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Hypothesis

Can we calculate achievable throughput
and place an upper bound for necessary
buffering capacity!?
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Modeling Assumptions

* The system being modeled is at steady state
* Arrival process is Poisson

* Service times are exponentially
distributed.

e Buffers are infinite with non-blocking reads and
writes.

SBS
Stream Ba§ed Wasn

Supercomputing Lab . P .
http://sbs .wustl .edu UDIVGI'SltY n StLOU,IS

Saturday, August 17, 13



Overall Model Layout

Application S » V1 5 V2 |
Topology
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communications resources
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Flow Model Filtering

Filtering - Gain or Loss of Data

64-bit Data Packet Ke 'n el

32-bit Data Packet
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Flow Model Filtering
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Flow Model
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Flow Model

- service rate of kernel
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Flow Model

- service rate of kernel

F.- fraction of data
along kernel out-edges
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Flow Model
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Flow Model

C - capacity for each edge
product of:
- service rate of kernel

F.- fraction of data
along kernel out-edges
- gain function of

upstream kernel
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What about sharing?
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What about sharing?

* Multicore(s) - Fair Sharing, even division of
processing capacity

* FPGA(S) - are shared non-temporally via area

 PCI Bus - Fair Sharing, even division of bandwidth
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Our Example
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Our Example
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Our Example

AC
Throughput In = 40 Bytes/s | e e
C u =40 Bytes/s
Hs = 13.33 Bytes/s
Throughput Qut = 40 Bytes/sy_ __________________
CD
Routing Fraction (F)=1.0
Gain Function (y)=1.0
Expected Departure Rate (Ep)=13.33 Bytes/s
s e,
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Our Example

......................

u =40 Bytes/s
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Our Example

......................
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Flow Model

Conservation of Flow
+ 1=35
Z f(m) — Z f(m) — ¢ 0 ¢ = circulation

il(E,5)€ErR JG,1)EEF — 1=1

Edge Capaaty Constraint

f(V; V) < C(V; V)
Routing Constraint
ViV :
]\}f( ]) N R(V;:V;)
S 2= J(ViV2) Nt
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Example finished

@ Steps Recap:
Max Flow = 26.7 B/s
e Start with a mapped

A
M =90 Bytes/s
Mg = 30 Bytes/s

P application topology

AB AC

M = 877 Bytes/s _
U = 438.5 Bytes/s W =900 Bytes/s

' i e Parameterize the model

B C
M = 150 Bytes/s M =40 Bytes/s
Mg = 150 Bytes/s Mg = 13.33 Bytes/s

Y v e Set the edge capacity equal to
the expected departure rate

D
1 =877 Bytes/s = 900 Bytes/
Mg = 438.5 Bytes/s 3 YR

\/

D

M = 80 Bytes/s
Mg = 26.7 Bytes/s

e Solve for maximum flow
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Testing Methodology

Supercomputing Lab
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Test the model on multiple real applications
(JPEG encode, DES encrypt).

Generate random synthetic applications
to explore a wider range of application topologies.

Randomly map applications to available
hardware using uniform random process.

Measure throughput and queue
occupancy on generated Application /
Hardware mappings at each stream (edge).
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Synthetic Application Stats

Statistic Mean Std. Deviation
Number of Vertices 21 | 7.52
Kernels per Resource 3.6 3.51
Gain or Loss 0.98 .03
Routing Probability (Fr) 0.585 0.340

Service Time (M)

Varies, mean 20 s

Packet Size

Varies, | 6-Bit to 64-Bit

Implementations

Hardware and Software

eeeeeeeeeee
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Utilized Hardware

Specification Machine | (x2) Machine 2

CPU |2 x 2.4 GHzAMD |4 x 3.1 GHz Intel
Opteron Xeon E3
FPGA 2 xVirtex-4 LX 100 None
RAM 32GB DDR2 8GB DDR3
SBS

http://sbs.wustl.edu
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Flow Model Results

W D U1 (@)
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Overall Model Layout

Application

s—p Vi | Vo [—p
Topology 1 2 t
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M/M/1 Occupancy Model

K 99.99999%

A = Throughput p — Service Rate
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Queue Model Results

Step I:

eeeeeeeeeee
Supercomputing Lab
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Modeled

Observed

Occupancy | Occupancy

Percent Error

M

O

(M - O / O)

Combine DES Encrypt, JPEG
Encode and Synthetic Applications

Make a histogram
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Queue Model Results
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Conclusion

* Showed that a generalized maximum flow
model can be used to solve for max flow of a
queueing network.

e Demonstrated the flow model is reliable on
real systems

e Simple M/M/| queueing model is insufficient to
estimate buffering requirements
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