
Copyright	©	2017	Arm	Limited

Technology	
ramblings	from	a	

(micro+)arch	
perspective

Jonathan	Beard
Staff	Research	Engineer,	Arm	Inc.

​MEMSYS	2017



©	Arm	2017	2

Disclaimer	
​These	are	my	ramblings,	not	opinions	of	Arm	Inc.

​Any	changes	to	architecture	must	go	through	the	standard	architecture	review	board	process

​Nothing	within	this	presentation	(or	discussion)	should	be	taken	as	a	direction	of	future	
architecture	or	product	plans	for	Arm	Inc/Ltd.	



©	Arm	2017	3

Capacity	vs.	bandwidth	in	our	3D	integrated	future

NV

corecore
L1 L1

L1

Lots	of	pins
Less	memory	/	core
Really	high	bandwidth
Lower	pin	clock	rate

Banked	+	Fewer	pins
Less	memory	/	core
High	bandwidth
Higher	pin	clock	rate

Resistance is futile!

Ø Shorter	wires	
between	layers	
(lower	latency)

Ø No	refresh	for	NV	
(frees	up	core	
design	a	bit)



©	Arm	2017	4 Confidential	©	ARM	2017	4

It’s	not	the	technology,	but	how	you	
use	it	within	a	system	(memory	tech	

+	[micro+]arch	+	software)



©	Arm	2017	5

Striking	a	balance
Lots	of	pins
Less	memory	/	core
Really	high	bandwidth
Lower	pin	clock	rate

Banked	+	Fewer	pins
Less	memory	/	core
High	bandwidth
Higher	pin	clock	rate

Ø How	to	drive	enough	
bandwidth	to	utilize?	

Ø More	pins	==	less	capacity	per	
core.	Is	this	practical?	

Ø How	do	you	:
Ø Partition	data	for	100K	

small	cores?	
Ø Program	100K	small	cores?
Ø Coherence….hah
Ø Addressing	scheme…

Ø More	capacity,	but	fewer	pins,	
how	to	move	data	from	vias?	

Ø How	to	drive	enough	
bandwidth	to	utilize?	

Ø Heterogeneous	cores	
everywhere,	how	to	offload	to	
them?	OS	takes	~2000	cycles	
on/off,	not	practical	to	maintain	
bandwidth.

Ø Translation	still	a	problem

NV

corecore
L1 L1

L1



©	Arm	2017	6

Interesting	idea

SPiDRE

XP
Vector 
Core

SRAM 
Buffer

via to 
scratchpad

L1

via to 
scratchpad

Shameless	plug	
for	my	work



©	Arm	2017	7

Processing	In-/Near-Memory
​Heterogeneous	everything

​Can	we	compute	where	it	makes	sense
• Right	compute	element

• Right	memory	technology

​Cores	in/near-memory

​Biggest	Issues	to	Adoption

• Programming	Model	(NP-Marketing)

• Translation	(biggest	and	hardest	problem)

• Scheduling	(sounds	easy	right?)



©	Arm	2017	8

Folding	(a.k.a.	Manual	Virtual	Memory)

• Virtual	memory	started	b/c	of	lack	of	available	
memory	vs.	storage

• Programmers	wrote	code	that	manually	
folded/unfolded	to	storage

“In ceasing to expend energy (item 1) in a process whose main result is to make 
programs less fit to run on other machine configurations (item 2), or to run in 
company with other programs (item 3), or to run with temporarily reduced resources 
(item 4), we do more than reduce costs; we remove self-created obstacles which today 
are impeding the development of needed types of systems”

- D.	Sayre,	IBM	Yorktown	Research	(1969)



©	Arm	2017	9

Evolution	of	Memory	Separation	

PINMIOMMU



©	Arm	2017	10

1970	- The	Circle	of	Tech		- “Self	Created	Obstacles”

Move	In	

Move	Out



©	Arm	2017	11

2017	- The	Circle	of	Tech	- “Self	Created	Obstacles”

Move	In	

Move	Out

Accelerator



©	Arm	2017	12

Scheduling
Ø Where	to	compute….

page
PINM

page page

page
PINM

PINM

PINM

core

data



©	Arm	2017	13

Scheduling
Ø Where	to	compute….

Ø BTW,	lets	make	a	
simpler	diagram

Core

MRAM

1024b
SRAM

256b
network

256b

Lower	density

High	density

Medium	
densityWhere	to	put	data?	

Where	to	put	
instructions?



©	Arm	2017	14 Confidential	©	ARM	2017	14

It’s	the	whole	system,	not	just	the	
technology.


