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ABSTRACT

Stream processing or data-flow programming is a compute
paradigm that has been around for decades in many forms
yet has failed garner the same attention as other mainstream
languages and libraries (e.g., C++ or OpenMP [15]). Stream
processing has great promise: the ability to safely exploit
extreme levels of parallelism. There have been many im-
plementations, both libraries and full languages. The full
languages implicitly assume that the streaming paradigm
cannot be fully exploited in legacy languages, while library
approaches are often preferred for being integrable with the
vast expanse of legacy code that exists in the wild. Li-
braries, however are often criticized for yielding to the shape
of their respective languages. RaftLib aims to fully exploit
the stream processing paradigm, enabling a full spectrum of
streaming graph optimizations while providing a platform
for the exploration of integrability with legacy C/C++ code.
RaftLib is built as a C++ template library, enabling end
users to utilize the robust C++ standard library along with
RaftLib’s pipeline parallel framework. RaftLib supports dy-
namic queue optimization, automatic parallelization, and
real-time low overhead performance monitoring.

Categories and Subject Descriptors

H.3.4 [Systems and Software]: [distributed systems]; D.1.3
[Concurrent Programming]: [distributed programming,
parallel programming]

1. INTRODUCTION & BACKGROUND
Decries touting the end of frequency scaling and the in-

evitability of our multi-core future are frequently found in
current literature [20]. Equally prescient are the numerous
papers with potential solutions to programming multi-core
architectures [6, 33, 41, 52]. One of the more promising
programming modalities to date is a very old one: stream
processing [18, 36] (the term“stream processing” is also used
by some to refer to online data processing [13, 21]).
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Figure 1: Simple streaming application example
with four compute kernels of three distinct types.
From left to right: the two source kernels each pro-
vide a number stream, the“sum”kernel adds pairs of
numbers and the last kernel prints the result. Each
kernel acts independently, sharing data via commu-
nications streams depicted as arrows.

Stream processing is a compute paradigm that views an
application as a set of compute kernels (also sometimes termed
“filters” [49]) connected by communication links that deliver
data streams. Each compute kernel is typically a sequen-
tially executing unit. Each stream is a first-in, first-out
(FIFO) queue whose exact allocation and construction is de-
pendent upon the link type. Figure 1 is an example of a sim-
ple streaming sum application, which takes in two streams
of numbers, adds each pair, and then writes the result to an
outbound data stream.

A salient feature of streaming processing is the compart-
mentalization of state within each compute kernel [1], which
simplifies parallelization logic for the run-time [19] as well
as the programming API (compared to standard paralleliza-
tion methods [2]). Therefore, stream processing has two
immediate advantages: 1) it enables a programmer to think
sequentially about individual pieces of a program while com-
posing a larger program that can be executed in parallel,
2) a streaming run-time can reason about each kernel in-
dividually while optimizing globally [38]. Moreover, stream
processing has the fortunate side effect of encouraging de-
velopers to compartmentalize and separate programs into
logical partitions.

In addition to simpler logic, stream processing also en-
ables easier heterogeneous and distributed computation. A
compute kernel could have individual implementations that
target an FPGA and a multi-core running within the same
application, known as “heterogeneous computation” or “hy-
brid computing” [14]. As long as the inputs and outputs
are matching, the application will run identically regard-
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less of which resource a kernel is scheduled to execute on.
Brook [12], Auto-Pipe [22], GPU-Chariot [23], and Scala-
Pipe [51] are examples of such systems. Stream processing
also naturally lends itself to distributed (network) process-
ing, where network links simply become part of the stream.
Despite the promising features of stream processing, there

are hurdles that affect programmers’ decision to use the
paradigm. One hurdle to adoption is communication cost.
For the example of Figure 1, the overhead of moving data el-
ements between compute kernels could easily overwhelm the
benefits of parallel computation. Clearly, a courser-grained
streaming decomposition of an application is more realistic
(we will continue to use this example, however, for illustra-
tion purposes). A second hurdle is simply the bulk of legacy
code and the requirement on the part of most streaming
frameworks that applications be re-authored or substantially
modified to conform [37].
This paper introduces RaftLib, a C++ template and frame-

work enabling safe and fast stream processing. By leveraging
the power of C++ templates, RaftLib can be incorporated
with a few function calls and the linking of one additional li-
brary. No compiler other than a C++ compiler is needed, so
it is completely self contained. By using the native C++ en-
vironment, the C++ standard library functionality is avail-
able. As to communication between nodes, RaftLib seam-
lessly integrates TCP/IP networks, and the parallelized ex-
ecution on multiple distributed compute nodes is transpar-
ent to the programmer. RaftLib reduces the communication
cost in a multitude of ways, drawing on research from past
works [8, 9, 29, 30] and enabling avenues of research that
would otherwise be irrelevant in conventional programming
models.

2. RELATED WORK
There are many streaming languages and run-time sys-

tems designed to assist the development of streaming ap-
plications. Brook [12] is a language designed for streaming
processing on GPUs. StreamIt [49] is a streaming language
and compiler based on the synchronous dataflow model.
Storm [46] and Samza [44] are open-source streaming plat-
forms that are focused on message-based data processing.
Those languages and frameworks have their “niche” applica-
tions. They are not designed for general-purpose program-
ming and usually have steep learning curves. RaftLib’s ad-
vantage over them is that a C++ template is easy to adopt
and has more general usage. ScalaPipe [51] and StreamJIT [11]
are two similar language extensions for streaming process-
ing with a Scala frontend and a Java frontend, respectively.
Other C++ parallelization template libraries include Thread-
ing Building Blocks [43] and Concurrency Collections [28],
which are both Intel products. RaftLib differs from the
last two in that it aims to provide a fully integrated and
dynamically optimized heterogeneous stream parallel pro-
cessing platform. A recent study of programming language
adoption [37] asserts that factors such as lack of legacy code
integration, library support, and language familiarity can
influence the adoption rate of new languages. According to
the monthly TIOBE index [50], the most popular language
family by far is C/C++ (anecdotally this is true for scien-
tific computing in general). The hurdles to adoption for a
C++ template library are significantly lower than those of
a new language (required of many other stream processing

systems). To the best of our knowledge, RaftLib is the first
C++ library directly targeting streaming processing.

There has been considerable work investigating the ef-
ficient execution of streaming applications, both on tradi-
tional multi-cores and on heterogeneous compute platforms,
from the early work on dedicated data flow engines [19],
to the synchronous data flow model [32]. Thies et al. [48]
describe a number of performance impacting factors for ap-
plications described using StreamIt, and Optimus [26] re-
alizes StreamIt applications on FPGA platforms. Streams-
C [24] is an earlier streaming language that targets FPGAs
for execution. Lancaster et al. [29, 30] have built low-impact
performance monitors for streaming computations, and Pad-
manabhan et al. [38, 39, 40] have shown how to efficiently
search the design space given a model that connects tun-
ing parameters to application performance. RaftLib intends
to leverage the above work as it seeks to efficiently execute
streaming applications.

3. DESIGN CONSIDERATIONS
Several properties of streaming applications that must be

exploited or overcome by streaming systems have been noted
by others. The stream access pattern is often that of a
sliding window [48], which should be accommodated effi-
ciently. RaftLib accommodates this through a peek_range

function. Streaming systems, both long running and oth-
erwise often must deal with behavior that differs from the
steady state [8, 34, 48]. Non-steady state behavior is of-
ten also observed with data-dependent behavior, resulting
in very dynamic I/O rates (behavior also observed in [48]).
This dynamic behavior, either at startup or elsewhere during
execution, makes the analysis and optimization of streaming
systems a slightly more difficult prospect, however it is not
insurmountable and we will demonstrate empirically how
RaftLib handles dynamic rates through a text search appli-
cation. For example, text search has the property that while
the input volume is often fixed, the downstream data vol-
ume varies dramatically with algorithms, which heuristically
skip, as does the output (pattern matches). Kernel devel-
opers, as should be the case, focus on producing the most
efficient algorithm possible for a given kernel. Despite this,
kernels can become bottlenecks within the streaming system.
Raft dynamically monitors the system to eliminate the bot-
tlenecks where possible. We will show how well this works
empirically and talk about future work that will expand the
real-time modeling and monitoring of these systems.

At one time it was thought that end users were probably
best at resource assignment [17], whereas automated algo-
rithms were often better at partitioning an application into
compute kernels (synonymous to the hardware-software co-
design problem discussed in [5]). Anecdotally we’ve found
that the opposite is often true. Programmers are typically
very good at choosing algorithms to implement within ker-
nels, however they have either too little or too much infor-
mation to consider when deciding where to place a computa-
tion and how to allocate memory for communications links.
The placement of each kernel changes not only the through-
put but also the latency of the overall application. In addi-
tion, it is often possible to replicate kernels (executing them
in parallel) without altering the application semantics [35].
RaftLib exploits this ability to blend pipeline and data par-
allelism as well.
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Streaming systems can be modeled as queueing networks [8,
31]. Each stream within the system is a queue. The sizes
of the queues within the system can have a notable effect
on application performance. Too small of queues results in
bottlenecks where otherwise none would exist, too big of
queues increases the burden on the system (often increasing
computation time through more page-ins, cache over-runs,
etc.). The effects of queue sizing are shown empirically in
Figure 4. RaftLib takes scheduling of compute kernels, al-
location of queues, and resource mapping out of the user’s
hands. Once a compute mapping is defined, the run-time
(through heuristics, machine learning, and/or mathemati-
cal modeling) attempts to keep the application performing
optimally.

4. RAFTLIB DESCRIPTION
Writing parallel code traditionally has been the domain

of experts. The complexity of traditional parallel code de-
creases productivity which can increase development costs [25].
The streaming compute paradigm generally, and RaftLib
specifically, enables the programmer to compose sequential
code and execute not only in parallel but distributed parallel
(networked nodes) using the same code.
RaftLib has a number of useful innovations as both a re-

search platform and a programmer productivity tool. As
a research platform, it is first and foremost easily extensi-
ble; modularized so that individual aspects can be explored
without a full system re-write. It enables multiple modes
of exploration: 1) how to effectively integrate pipeline par-
allelism with standard threaded and/or sequential code, 2)
how to reduce monitoring overhead, 3) how best to algorith-
mically map compute kernels to resources, 4) how to model
streaming applications quickly so that results are relevant
during execution. It is also fully open source and publicly
accessible [42]. As a productivity tool it is easily integrable
with legacy C++ code. It allows a programmer to parallelize
code in both task and pipelined fashions.
We introduce RaftLib via the following example applica-

tion. The sum kernel from Figure 1 is an example of a kernel
written in a sequential manner (code shown in Figure 2). It
is authored by extending a base class: raft::kernel. Each
kernel communicates with the outside world through com-
munications “ports.” The base kernel object defines input

and output port user accessible objects. These are inher-
ited by sub-classes of raft::kernel. Port container objects
can contain any type of port. Each port itself is essentially
a FIFO queue. The constructor function of the sum kernel
adds the ports. In this example, two input ports are added
of type A & B as well as an output port of type C. Each port
gets a unique name which is used by the run-time and the
user. The real work of the kernel is performed in the run()

function which is called by the scheduler. The code within
this section can be thought of as a “main” function of the
kernel. Input and output ports can access data via a mul-
titude of intuitive methods from within the run() function.
Accessing a port is safe, free from data race and other is-
sues that often plague traditional parallel code [7]. Figure 3
shows the full application topology from Figure 1 assembled
in code. Assembling the topology can be thought of as con-
necting a series of actors, which is also a sequential process.
Each call to the link function connects the specified ports
from the source and destination kernels. The function call
returns a struct with references to the linked source and des-

template< typename A,

typename B,

typename C > class sum :

public raft::kernel

{

public:

sum() : raft::kernel()

{

input.addPort< A >( "input_a" );

input.addPort< B >( "input_b" );

output.addPort< C >( "sum" );

}

virtual raft::kstatus run()

{

auto a( input[ "input_a" ].pop_s< A >() );

auto b( input[ "input_b" ].pop_s< B >() );

auto c( output[ "sum" ].allocate_s< C >() );

(*c) = (C)((*a) + (*b));

return( raft::proceed );

}

};

Figure 2: A simple example of a sum kernel which
takes two numbers in via input_a and input_b, adds
them, and outputs them via the sum stream. With
the pop_s and allocate_s functions, objects are re-
turned which automatically pop and send items, re-
spectively.

tination kernels for re-use by the programmer if needed. The
run-time itself brings the parallel power to these sequential
actors.

Once the kernel “actors” are assembled into a full appli-
cation, the run-time starts to work parallelizing the appli-
cation with the exe() function call. This feat is efficiently
performed by mapping kernels to appropriate resources, siz-
ing buffers, selecting the appropriate algorithm when more
than one exists, scheduling kernels for execution, and tuning
any remaining performance impacting run-time parameters.

Scheduling, mapping, and queueing behavior are each im-
portant to efficient, high-performance execution. RaftLib
is intended to facilitate empirical investigation within each
of these areas. RaftLib implements a simple but effective
scheduler that is straightforward to substitute with new al-
gorithms. Similarly, the modular mapping algorithms used
in RaftLib can easily be altered for comparative study. Each
communication link between compute kernels exhibit queue-
ing behavior. RaftLib serves as a platform for optimizing
the queueing network, not only statically but dynamically.
RaftLib supports continuous optimization of a host of run-
time settable parameters.

There are many factors that have led to the design of
RaftLib. Chief amongst them is the desire to have a fully
open source framework to explore how best to integrate
stream processing with legacy code. Secondly it serves as
an experimental platform for investigating optimized de-
ployment and optimization of stream processing systems.
In the following sections we discuss why we need the fea-
tures included in the library, the science and engineering
behind them and some examples of how those features are
executed by the user. This will be followed by benchmark-
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const std::size_t count( 100000 );

auto linked_kernels(

map.link( kernel::make<

generate< std::int64_t > >( count ),

kernel::make<

sum< std::int64_t,

std::int64_t,

std::int64_t > >(),

"input_a" ) );

map.link(

kernel::make< generate< std::int64_t > >( count ),

&( linked_kernels.dst ),

"input_b" );

map.link(

&( linked_kernels.dst ),

kernel::make< print< std::int64_t ,’\n’> >() );

map.exe();

Figure 3: Example of a streaming application map
for a “sum”application (topology given in Figure 1).
Two random number generators are instantiated,
each of which sends a stream of numbers to the sum

kernel which sends the sum to a print kernel. The
call to link() returns a struct (linked_kernels) with
references to the kernels used within the link() func-
tion call (linked_kernels.src and linked_kernels.dst

respectively) so that they may be referenced in sub-
sequent link calls.

ing a text searching application against other leading parallel
text search applications.

4.1 RaftLib as a Research Platform
As a research platform, RaftLib is designed to enable the

investigation of a number of questions that impact the per-
formance of streaming applications. We will address a num-
ber of these questions in the paragraphs below, with a focus
not on the answer to the research question, but instead on
how RaftLib facilitates the investigation.
We start with the ability to blend pipeline parallelism with

data parallelism. Some applications require data to be pro-
cessed in order, others are okay with data that is processed
out of order, yet others can process the data out of order
and re-order at some later time. RaftLib accommodates all
of the above paradigms. Streams that can be processed out
of order are ideal candidates for the run-time to automati-
cally parallelize. Li et al. [35] describe algorithms for repli-
cating kernels in a pipelined environment, both for homo-
geneous compute resources and for heterogeneous compute
resources.
Automatic parallelization of candidate kernels is accom-

plished by analyzing the graph for segments that can be
replicated preserving the application’s semantics (indicated
by the user at link type with template parameters). There
are default split and reduce adapters that are inserted where
needed. Custom split reduce objects can be created by the
user by extending the default split / reduce objects. Split
data distribution can be done in many ways, and the run-
time attempts to select the best amongst round-robin and
least-utilized strategies (queue utilization used to direct data
flow to less utilized servers). As with all of the specific mech-
anisms that we will discuss, each of these approaches is de-

signed to be easily swapped out for alternatives, enabling
empirical comparative study between approaches.

Given an application topology to execute (possibly includ-
ing some replicated kernels), the kernels need to be assigned
to specific compute resources and scheduled for execution.
We refer to the assignment of kernels to compute resources
as the mapping problem, and the initial mapping algorithm
provided with RaftLib is a simple one (similar to a spanning
tree) that attempts to place the fewest number of “streams”
over high latency connections (i.e., across physical compute
cores or TCP links). It begins with a priority queue with
the highest latency link getting the highest priority, finds
the partition with the minimal number of links crossing it
then proceeds to partition based on the next highest latency
link for these two partitions. If no difference in latency ex-
ists (which can be the case if only a single socket core is
used) then computation is shared evenly amongst the cores.
No claim is made to optimality for this simple algorithm,
however it is fast.

Individual kernels are implemented in the library as inde-
pendent execution units (i.e., a thread, process, FPGA ac-
celerator, etc.). The initial scheduling algorithm for threads
and processes is simply the default thread-level scheduler
provided by the underlying operating system. FPGA ac-
celerator cards and GPGPU(s) utilize their own schedulers.
We anticipate incorporating recent work [3] which supports
cache-aware scheduling of pipelined computations. RaftLib,
of course, allows the substitution of any scheduler desired.

As illustrated in Figure 4, the allocated size of each queue
of a streaming application can have a significant impact on
performance (the figure is for a matrix multiply applica-
tion, performance based on overall execution time). One
would assume perhaps that simply selecting a very large
buffer might be the best choice, however as shown the up-
per confidence interval begins to increase after about eight
megabytes. Queueing models are often the fastest way to
estimate an approximate queue size, however service rates
and their distributions must be determined, which is hard to
do during execution. In general, two options are available
for determining how large of a buffer to allocate: branch
and bound search or analytic modeling. Branch and bound
searching has the advantage of being extremely simple, and
eventually finds some reasonable condition. If the queue is
destined to be of infinite size, a simple engineering solution
presents itself in the form of a buffer cap. Model based so-
lutions are also often straightforward to calculate, assuming
the conditions are right for considering each queue individ-
ually (e.g., the queueing network is of product form).

While treating compute kernels as a “black” box, queue
sizing approaches must accommodate program correctness.
If a kernel asks to receive five items and the buffer size is only
allocated for two, the program cannot continue. RaftLib
deals with this by detecting this condition with a monitoring
thread, updated every δ ← 10 µs. When conditions dictate
that the FIFO needs to be resized, it is done using lock-free
exclusion and only under certain conditions (to maximize re-
sizing efficiency). The resizing operation is most efficiently
accomplished when the read position is less than the write
pointer (i.e., the queue or ring-buffer is in a non-wrapped
position). There are multiple conditions that could trigger
a resize and they differ depending on the end of the queue
under consideration. On the side writing to the queue, if the
write process is blocked for a time period of 3 × δ then the
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Figure 4: Queue sizes for a matrix multiply appli-
cation, shown for an individual queue (all queues
sized equally). The dots indicate the mean of each
observation (each observation is a summary of 1k
executions). The red and green lines indicate the
95th and 5th percentiles respectively. The execution
time increases slowly with buffer sizes ≥ 8 MB, as
well as becoming far more varied.

queue is resized. On the read side, if the reading compute
kernel requests more items than the queue has available then
the queue is tagged for resizing. Temporary storage is pro-
vided on the receiver end to ensure the request is fulfilled as
well as ensure that conditions for fast resizing are met.
Considering the application as a whole for optimization is

also possible for RaftLib. Prior works by Beard and Cham-
berlain [8] demonstrate the use of flow models to estimate
the overall throughput of an application. This procedure
however requires estimates of the output distribution for
each edge within the streaming application. The flow-model
approximation procedure can be combined with well known
optimization techniques such as simulated annealing or ana-
lytic decomposition [38, 39, 40] to continually optimize long-
running high throughput streaming applications.
The “share-nothing” mantra of stream processing might

introduce extra overhead, however it enables fairly easy pro-
gramming of massively parallel systems. Each compute ker-
nel can be easily duplicated on the same system, on different
hardware across network links or even on GPGPU systems.
As a research vehicle, RaftLib enables studies that explore
how the communication and resource placement can be op-
timized. As a productivity tool, we are more interested in
how few lines of code it takes to produce a result. Men-
tioned but not described has been the distributed nature of
RaftLib. The capability to use TCP connections for many
systems is clunky at best. With RaftLib there is no differ-
ence between a distributed and a non-distributed program
from the perspective of the developer. A separate system
called “oar” is a mesh of network clients that continually
feed system information to each other. This information is
provided to RaftLib in order to continuously optimize and
monitor Raft kernels executing on multiple systems. The
“oar” system also provides a means to remotely compile and
execute kernels so that a user can have a simple compile and

forget experience. Future work will see the full and complete
integration of both TCP links and GPGPU kernels.

Performance monitoring is critical to the exploration of
algorithms. It is also central to the automated optimization
and modeling that is part of RaftLib. As such the user has
access to monitor useful things such as queue size, current
kernel configuration as they are updated by the run-time.
In addition to these, more exciting statistics such as mean
queue occupancy, service rate, throughput, queue occupancy
histograms are available. The data collection process itself
is optimized to reduce overhead and has been the subject of
much research [29, 30]. Future work in visualization could
determine the best way to display this information to the
user in order to improve their ability to act upon it.

4.2 Authoring Streaming Applications
Next we consider the authoring of application. We’ll show

some code segments to see how little code is needed to write
a parallel algorithm and how familiar it can be to C++
programmers.

RaftLib views each compute kernel as a black-box at the
level of a port interface. Once ports are defined, the only
observability that the run-time has is the interaction of the
algorithm implementation inside the compute kernel with
those ports. A new compute kernel is defined by extending
raft::kernel as in Figure 2. Kernels have access to add
named ports, with which the kernel can access data from in-
coming or write to outgoing data “streams.” Programmers
building a kernel have a multitude of options to access data
on the kernel. The example in Figure 2 shows the simplest
method (pop_s) to get data from the input stream, which is
a return object which gives the user a reference to the head
of the incoming queue (for variables a & b). A reference
to the output queue is given by the allocate_s function.
When each of these variables exits the calling scope, they
are popped from the incoming queues and pushed to the
outgoing queue respectively. The return objects from the
allocate_s and pop_s calls also have associated signals ac-
cessible through the sig variable. There are multiple calls to
perform push and pop style operations, each embodies some
type of copy semantic (either zero copy or single copy), all
provide a means to send or receive synchronous signals. Syn-
chronized signaling is implemented so that downstream ker-
nels will receive the signal at the same time the correspond-
ing data element is received (useful for things like end of file
signals). Asynchronous signaling (i.e., immediately available
to downstream kernels) is also available. Future implemen-
tations will utilize the asynchronous signaling pathway for
global exception handling.

Arranging compute kernels into an application is one of
the core functionalities of a stream processing system. RaftLib
has an imperative mode of kernel connection via the link

function. The link function call has the effect of assigning
one output port of a given compute kernel to the input port
of another compute kernel. A map object is defined in the
raft namespace of which the link function is a member.
Figure 3 shows our simple example application which takes
two random number generating kernels, adds pairs of the
random numbers using the sum kernel and prints them.

When the user runs the exe() function of map object,
the graph is first checked to ensure it is fully connected,
then type checking is performed across each link. Before
a link allocation type is selected (POSIX shared memory,
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/** data source container **/

std::vector< std::uint32_t > v;

int i( 0 );

/** fill container **/

auto func( [&](){ return( i++ ); } );

while( i < 1000 ){ v.push_back( func() ); }

/** receiver container **/

std::vector< std::uint32_t > o;

/** read from one kernel and write to another **/

map.link(

kernel::make< read_each< std::uint32_t > >

( v.begin(),

v.end() ),

kernel::make< write_each< std::uint32_t > >

( std::back_inserter( o ) ) );

/** data is now copied to ’o’ **/

Figure 5: Syntax for reading and writing to C++
standard library containers from raft::kernel ob-
jects. The read_each and write_each kernels are read-
ing and writing on independent threads.

heap allocated memory or TCP link), and each kernel is
mapped to a resource. This could be pinning the thread or
heavyweight process to a compute core, mapping the kernel
to another compute node over a distributed system or even
potentially a GPGPU. Once the link allocation types are
selected, the run-time selects the narrowest convertible type
for each link type and casts the types at each endpoint.
Future versions will incorporate link data compression as
well, further improving the cache-able data. Once memory
is allocated for each link, a thread continuously monitors all
the queues within the system and reallocates them as needed
(either larger or smaller) to improve performance.
Streaming applications are often ideally suited for long

running, data intense applications such as big data process-
ing or real-time data analytics. The conditions for these ap-
plications often change during the execution of a single run.
Algorithms use different optimizations based on differing in-
puts (i.e., sparse matrix vs. dense matrix multiply). Chang-
ing conditions can often benefit from additional resources or
differing types of algorithms within the application to elim-
inate bottlenecks as they emerge. RaftLib gives the user
the ability to specify synonymous kernel groupings that the
run-time can swap out to optimize the computation. These
can be kernels that are implemented for multiple hardware
types, or can be differing algorithms. For instance, a ver-
sion of the UNIX utility grep could be implemented with
multiple search algorithms. Some of these algorithms re-
quire differing pieces, however they can all be expressed as
a “search” kernel.
Integration with legacy C++ code is one of our goals.

As such, it is imperative that RaftLib work seamlessly with
the C++ standard library functions. Figure 5 shows how a
C++ container can be used directly as an input queue to
a streaming graph, in parallel if out of order processing is
allowed. Just as easily, a single value could be read in. Out-
put integration is simple as well, standard library containers
maybe be output queues, or a reduction to a single output
value is possible.
Copying of data is often an issue as well within stream pro-

cessing systems. RaftLib provides a for_each kernel (Fig-

int *arr = { 0, ..., N };

int val = 0;

auto &kernels(

map.link( kernel::make< for_each< int > >( arr,

arr_length ),

kernel::make< some_kernel< int > >() ) );

map.link( &( kernels.dst ),

kernel::make<

reduce< int,

func /* reduct function */ >

>( val ) );

/** val now has the result **/

Figure 6: Example of the for_each kernel, which is
similar to the C++ standard library for_each func-
tion. The data from the given array is divided
amongst the output queues using zero copy, mini-
mizing data extraneous data movement.

ure 6), which has behavior distinct from the write_each

and read_each kernels. The for_each takes a pointer value
and uses its memory space directly as a queue for down-
stream compute kernels. This is essentially a zero copy and
enabling behavior from a “streaming” application similar to
that of an OpenMP [15] parallelized loop. Unlike the C++
standard library for_each, the RaftLib version provides an
index to indicate position within the array for the start po-
sition. This enables the compute kernel reading the array
to calculate the position within it. When this kernel is ex-
ecuted, it appears as a kernel only momentarily, essentially
providing a data source for the downstream compute kernels
to read.

Code verbosity is often an issue. Readily available in
C++ is the declaration of a class or a template, when often
what is wanted is the ability to pass a simple function and
have it executed by the called function. Newer languages
and C++11 have met this demand with lambda functions.
RaftLib brings lambda compute kernels, which give the user
the ability to declare a fully functional, independent kernel
while freeing him/her from the cruft that would normally
accompany such a declaration. Figure 7 demonstrates the
syntax for a single output random number generator. The
closure type of the lambda operator also allows for usage
of the static keyword to maintain state within the func-
tion [16]. These kernels can be duplicated and distributed,
however they do induce one complication if the user decides
to capture external values by reference instead of by value,
undefined behavior may result if the kernel is duplicated;
especially across a TCP link (an issue we will resolve in sub-
sequent versions of RaftLib).

5. BENCHMARKING
Text search is used in a variety of applications. We will

focus on the exact string matching problem which has been
studied extensively. The stalwart of string matching ap-
plications (both exact and inexact) is the GNU version of
the grep utility. It has been developed and optimized for
20+ years resulting in excellent single threaded exact string
matching performance (∼ 1.2 GB/s) on our test machine
(see Table 1). To parallelize GNU grep, the GNU Par-
allel [47] utility is used to spread computation across one
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map.link(

/** instantiate lambda kernel as source **/

kernel::make< lambdak< std::uint32_t > >( 0, 1, []

( Port &input,

Port &output )

{

auto out(

output[ "0" ].allocate_s< std::uint32_t >() );

(*out) = rand();

} /** end lambda kernel **/ ) /** end make **/,

/** instantiate print kernel as destination **/

kernel::make< print< float, ‘\n’ > >() );

Figure 7: Syntax for lambda kernel. The user spec-
ifies port types as template parameters to the ker-
nel, in this example std::uint32_t. If a single type is
provided as a template parameter, then all ports for
this lambda kernel are assumed to have this type. If
more than one template parameter is used, then the
number of types must match the number of ports
given by the first and second function parameters
(input and output port count, respectively). The
number of input ports is zero and the number of out-
put ports is one for this example. Ports are named
sequentially starting with zero. The third parame-
ter is a lambda function which is called repeatedly
by the runtime.

through 16 cores. Two differing text search algorithms will
be tested and parallelized with RaftLib. One will utilize the
Aho-Corasick [4] string matching algorithm which is quite
good for multiple string patterns. The other will use the
Boyer-Moore-Horspool algorithm [27] which is often much
faster for single pattern matching. The realized application
topology for both string matching algorithms implemented
with RaftLib are conceptually similar to Figure 8, however
the file read exists as an independent kernel only momentar-
ily as a notional data source since the run-time utilizes zero
copy, and the file is directly read into the in-bound queues
of each match kernel.
Figure 9 shows code necessary to generate the applica-

tion topology used to express both string matching algo-
rithms using RaftLib. Not shown is the code to handle ar-
guments, setup, etc. Note that there is no special action
required to parallelize the algorithm. The filereader ker-
nel takes the file name, it distributes the data from the file to
each string matching kernel. The programmer can express
the algorithm without having to worry about parallelizing
it. The programmer simply focuses on the sequential algo-
rithm. Traditional approaches to parallelization require the
programmer to have knowledge of locks, synchronization,
and often cache protocols to safely express a parallel algo-
rithm. Even more exciting is that when using RaftLib, the
same code can be run on multi-cores in a distributed network
without the programmer having to do anything differently.
For comparison we contrast the performance of our im-

plementations of Aho-Corasick and Boyer-Moore-Horspool
against the GNU grep utility and a text matching appli-
cation implemented using the Boyer-Moore algorithm im-
plemented in Scala running on the popular Apache Spark
framework. We’ll use a single hardware platform with mul-
tiple cores and a Linux operating system (see Table 1).

auto kern_start(

map.link< raft::out >(

kernel::make<

filereader >( file,

offset ),

kernel::make<

search< ahocorasick /** or boyermoore **/ >

>( search_term ) ) );

map.link< raft::out >(

&(kern_start.dst),

kernel::make<

write_each< match_t > >(

std::back_inserter( total_hits ) ) );

Figure 9: Implementation of the string matching ap-
plication topology using RaftLib. The actual search
kernel is instantiated by making a search kernel. The
exact algorithm is chosen by specifying the desired
algorithm as a template parameter to select the cor-
rect template specialization.

We use version 2.20 of the GNU grep utility. In order to
parallelize GNU grep, the GNU Parallel [47] application is
used (version 2014.10.22), with the default settings. RaftLib
(and all other applications/benchmarks used) is compiled
using GNUGCC 4.8 with compiler flags“-Ofast.” When par-
allelizing all algorithms, the maximum parallelism is capped
to the number of cores available on the target machine. A
RAM disk is used to store the text corpus to ensure that disk
IO is not a limiting factor. The corpus to search is sourced
from the post history of a popular programming site [45]
which is ∼ 40 GB in size. The file is cut to 30 GB before
searching. This cut is simply to afford the string matching
algorithms the luxury of having physical memory equal to
the entire corpus if required (although in practice none of
the applications required near this amount). All timing is
performed using the GNU time utility (version 1.7) except
the Spark application, which uses its own timing utility.

Table 1: Summary of Benchmarking Hardware.
Processor Cores RAM OS Version

Intel Xeon E5-2650 16 62 GB Linux 2.6.32

Figure 10 shows the throughput (in GB/s) for all of the
tested string matching applications, varying the utilized cores
from one through 16. The performance of the GNU grep

utility when single threaded is quite impressive. It handily
beats all the other algorithms for single core performance
(when not using GNU Parallel, as shown in the figure). Per-
fectly parallelized (assuming linear speedup) the GNU grep

application could be capable of ∼ 16 GB/s. When paral-
lelized with GNU Parallel however, that is not the case.

The performance of Apache Spark when given multiple
cores is quite good. The speed-up is almost linear from a
single core though 16 cores. The Aho-Corasick string match-
ing algorithm using RaftLib performs almost as well, topping
out at ∼ 1.5 GB/s to Apache Spark’s ∼ 2.8 GB/s. RaftLib
has the ability to quickly swap out algorithms during ex-
ecution, this was disabled for this benchmark so we could
more easily compare specific algorithms. Manually changing
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Figure 8: String matching stream topology for both Boyer-Moore-Horpool and Aho-Corasick algorithms.
The first compute kernel (at left) reads the file and distributes the data. The second kernel labeled Match

uses one or the other algorithms to find string matches within the streaming corpus. The matches are then
streamed to the last kernel (at right) which combines them into a single data structure.

the algorithm RaftLib used to Boyer-Moore-Horspool, the
performance improved drastically. The speed-up from one
through 10 cores is now linear, with the 30 GB file searched
in ∼ 4.1 s which gives it close to 8 GB/s throughput.
Overall the performance of the RaftLib Aho-Corasick string

matching algorithm is quite comparable to the one imple-
mented using the popular Apache Spark framework. The
Boyer-Moore-Horspool however outperforms all the other al-
gorithms tested. The change in performance when swapping
algorithms indicates that the algorithm itself (Aho-Corasick)
was the bottleneck. Once that bottleneck is removed we
found that the memory system itself becomes the bottleneck.
Future work with cache aware scheduling and pipeline pre-
fetch could perhaps improve performance further by reduc-
ing memory latency. All in all the performance of RaftLib
is quite good, comparable with one of the best current dis-
tributed processing frameworks (Apache Spark) and far bet-
ter than the popular parallelizing utility GNU Parallel.

6. CONCLUSIONS & FUTURE WORK
RaftLib has many features that enable a user to integrate

fast and safe streaming execution within legacy C++ code.
It provides interfaces similar to those found in the C++
standard library, which we hope will enable users to pick up
how to use the library at a faster pace. We’ve also shown
new ways to describe compute kernels, such as the “lambda”
kernels which eliminates much of the“boiler-plate”code nec-
essary to describe a full C++ class or template. What we’ve
also described is a framework for massively parallel execu-
tion that is simple to use. The same code that executes
locally can execute distributively with the integration of the
“oar”network framework. No programming changes are nec-
essary. This differs greatly from many current open source
distributed programming frameworks.
What we’ve done with the RaftLib framework is lay a

foundation for future research. How best to integrate stream
processing with sequential computation is still an open ques-
tion. Pragma methods such as OpenMP for loop paralleliza-
tion work well for parallelizing loops, however they’re far
from ideal as programmers must fully understand how to
use the available options in order to get the most out of
OpenMP. RaftLib promises similar levels of parallelism that
are automatically optimized by the run-time. Towards this
end instrumentation and dynamic optimization must be im-
proved. Things like fast automatic model selection (e.g.,

Beard et al., [10]), resource to kernel matching and envi-
ronmental adaptation must be researched and perfected in
order for systems such as these to fully exploit the myriad of
computational resources available today (multi-cores, vector
processors, GPGPUs, etc.).

The RaftLib framework provides a platform for safe and
fast parallel streaming execution within the C++ language.
It serves as a productivity tool and a research vehicle for
exploring integration and optimization issues. Despite the
slow adoption rate of stream processing, we hope that the
utilization of a widely used existing language (C++) serves
as a catalyst to gain more than a niche user base.
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