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Streaming Computing

streams [[ Output ]] Work( InputOne, InputTwo )
{

X = InputOne.get( );

Y = InputTwo.get( );

out = do something( X, Y );
Output.push( out );
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Streaming Computing
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Streaming Computing

Kernel 2
Stream
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Streaming Languages

Streamlt, Auto-Pipe, Brook, Cg, S-
Net, Scala-Pipe, Streams-C and
many others
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Optimization
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Optimization

multi-core B
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multi-core A

Kernel 2
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More allocation choices,
NUMA nodeA or B to Kernel 2
allocate stream.
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Optimization
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Optimization

A — B — C

“Stream” is modeled as a Queue
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Streaming on Multi-core Systems

We want good models for streaming systems
on shared multi-core systems (i.e., a cluster)

Problem: Accurate measurement is very difficult. Is there
a way to decide on a model without It.

 Commodity multi-core timer availability and latency
* Frequency scaling and core migration
 Measuring modifies the application behavior
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Derived Information
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Is there a pattern of minimal variation within the
systems we’re running on?

Avg. Service Time = E[ X ] + Error
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Goal

-Ind a distribution that characterizes
the minimum expected variation of a
hardware and software system

Use this characterization to
accept or reject models
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Process

- Measurement
- Workload definition
- FInd a distribution

- Utilize the distribution to aid model selection
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Timer Mechanism

Ask for Time
— \
Timer Thread Code

\ Receive Time /
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Timer Mechanism

Timer Thread
rdtsc clock gettime

e X806 assembly  POSIX standard
e varying methods e relatively accurate

to serialize e portable
e relatively fast e slower than rdtsc
 multiple dritt

ISSUES
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Two Timing Choices
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NUMA Node Variations
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same different
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Minimize Variation

* Restricting timer to single core

e Use the x86 rdtsc instruction with processor
recommended serializers for each processor

type

 Keeping processes under test on the same
NUMA node as timer

 Run timer thread with altered priority to
Mminimize core context swaps
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Best Case Execution Time Variation

* NO-0p Instruction iImMplemented In Most processors
* usually takes exactly 1 cycle

e No real functional units are involved, so least
taxing

e variation observed In execution time should be
external to process
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Data Collection

* NO-op loops calibrated for various nominal
times, tied to a single core and run
thousands of times

e Execution time measured end to end for
each run, environment collected

 Parameters include:

Number of processes executing on core
Number of context swaps (voluntary,
involuntary)

Many others
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_evy Distribution
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_evy Distribution

e Jruncation enables mean calculation, but

requires fitting to each dataset to find where
{O truncate

* [he truncation parameters are correlated to
both the number of processes per core and
the expected execution time

* Roughly linear relationship gives an
approximate solution to truncation
parameters without refitting
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L evy Fit
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Test Setup

NEEN
Sl i ©,

Question: Can we use an M/M/1 queueing model to
estimate the mean gueue occupancy of this system?

Hypothesis: Lower Kullback-Leibler (KL) divergence
between expected and realized distribution Is
associated with higher model accuracy.
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Test Setup

Stream Based
Supercomputing Lab
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. Dedicated thread of execution monitors

gueue occupancy

. Calculate the estimated mean queue

occupancy using the M/M/1 model

. Calculate KL Divergence for the arrival

process distribution using the truncated
Levy distribution noise model
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Convolution with Exponential

KL—-Divergence
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Conclusions

* [The truncated Levy distribution can be used to
approximate BCETV

* The distribution of BCETV can be used as a tool
to accept or reject a stochastic queueing model
based on distributional assumptions

KL divergence between the expected and
convolved distribution highly correlates with
gueue model accuracy
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Parting Notes

Slides available here:
sbs.wust.edu

Timer C++ template code:
hitp://goo.gl/ltd3|P

Test harness used to collect data:
http://goo.gl/U1VGEN
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