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Data moved throughout the memory
hierarchy that is not used after it is
moved.
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Data Movement Dominates

CoMD
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Source: Simon, Horst. "Why we need exascale and why we won't get there
by 2020." Opt. interconnects conf., Lawrence Berkeley National Laboratory,
Santa Fe. 2013.

ARM



Superfluous Data Movement Utilized Bandwidth

gl

Dark Bandwidth
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By eliminating Dark Bandwidth, we can
make computing more efficient, enabling
performance gains despite the impending

end of Moore’s Law.

ARM



6

How we get data

~ |28 bits / cycle

CPUO
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How we get data
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How we get data

~ |28 bits l/_c_ycle
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How we get data
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How we get data
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How we get data

move (7or 1),

) fixed width bus
coherent usually 64 + ECC

Translate network
to Physical
\DRAM
CPUO =] L1
Oxfff (virtual) Single cache line = 8
TLB requests of 8 bytes

. Issue to
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Reuse Distance

= |f data within a cache line is used more than once, then the cache line is said to be

reused

= We need to answer: how many other cache lines are used in between accesses!?
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Reuse Distance

= |f data within a cache line is used more than once, then the cache line is said to be

reused

= We need to answer: how many other cache lines are used in between accesses!?
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Reuse Distance

= |f data within a cache line is used more than once, then the cache line is said to be

reused

= We need to answer: how many other cache lines are used in between accesses!?
= Blue has a reuse distance of one if the metric is in units of a cache line
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Utilization

= How much of a cache line is used before it is evicted?

 We moved all the data labeled waste through that entire maze of wires
only to evict it again!!

CPU 1

Needed Wasted
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Dance of reuse and utilization
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A balanced system

= Dark bandwidth results in:

- More energy
= Higher latency

« Less usable bandwidth between levels of cache hierarchy

CPU 1
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Solutions
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Moving Instructions to Data — Map Reduce

MapReduce Data access
small % of
page
nction — Data
\ .| Data
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Moving Instructions to Data — Pointer Chasing
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Processing In-/Near-Memory

core
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Gather-Scatter
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Near-memory Gather-Scatter
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Data Reduction Potential (preview of MEMSYS|7)
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*Cycles based on simulation model with 4-cycle L1-D latency, 14-cycle L2 latency
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“ldeal” PINM Characteristics

= Many small cores near memory
= Maximize number of independent functions
= Minimize communications between PINM units function

= Minimize communication to main cores

= Determine address and bounds of data to be .
operated on as early as possible to issue to
memory

©ARM 2017
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Lost in Translation
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Two Options

= Contiguous pages / huge pages
= Well suited for some things, but not for
others

= PINM devices need more hardware for
coherence/synchronization

= Pointer chasing outside page not easy

lots of

cores Huge Page

©ARM 2017

= Small pages

= Suited for all applications

= PINM device simpler

= page level synchronization

= |imited coherence

= Pointer chasing outside of page not easy,

maybe IOMMU?
core
page core
page
core — core
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How Bad Can It Be?
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A more addressable
future for accelerators
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* Virtual memory started b/c of lack of available
memory vs. storage

* Programmers wrote code that manually
folded/unfolded to storage

* Huge controversy existed b/c all code at the time
was written this way — Automatic folding hardware
was ~25% slower than manual folding

“In ceasing to expend energy (item 1) in a process whose main result is to make
programs less fit to run on other machine configurations (item 2), or to run in
company with other programs (item 3), or to run with temporarily reduced resources
(item 4), we do more than reduce costs; we remove self-created obstacles which today
are impeding the development of needed types of systems”

- D. Sayre, IBM Yorktown Research (1969)
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1970 - The Circle of Tech - “Self Created Obstacles”

: R
SREREREEE -

S
SN -

SHNRRREEE -

unnu'euc .
llllLlln .

ARM

34  ©ARM20I17



2017 - The Circle of Tech - “Self Created Obstacles”
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Can we live with virtual memory?

= Yes, but for how long!?
= Data structures for specific systems (embed “In ceasing to expend energy (item 1)
translations) in a process whose main result is to
make programs less fit to run on
other machine configurations (item
2), or to run in company with other
programs (item 3), or to run with
temporarily reduced resources (item

4), we do more than reduce costs; we
» Fundamental flaw in page-based virtual memory | remove self-created obstacles which

= It’s not scalable — single point bottleneck today are impeding the development
of needed types of systems”

= Abstractions to made to extend VM try to make it
better, but really make it worse (unified virtual
addressing).

= Bigger hardware page cache’s only mean extending the
current system for a few years at best.

= Inherently local (page cache needed)

= Accelerators attached as an afterthought, the future is
heterogeneous. - D. Sayre, IBM Yorktown Research

= Many solutions to reducing data movement hobbled by (1969)

translation machinery.
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Conclusions

= Every byte move costs: memory

- Energy, Latency, Bandwidth = Lightweight, simple, near memory

. rocessors
= A balanced system could consist of: P

= Heavyweight throughput cores
= DMA / gather/scatter engines near

Getting there requires changing the way we do virtual memory

Compute Intensity RUD CLU Proposed Ideal Processing Modality
Low High Low PINM

High High Low Data Rearrangement

'Low / High High High PINM |
Low / High Low Low Data Rearrangement

Low / High Low High Current Processor Pipeline

Twitter: @jonathan_beard
vy Thanks for listening!! ARM



