Eliminating Dark Bandwidth

ARM Jonathan Beard (twitter: @jonathan_beard)

Staff Research Engineer
Memory Systems, HPC

HCPM 2017
22 June 2017

©ARM 2017

Data moved throughout the memory
hierarchy that is not used after it is
moved.

ARM

3

Data Movement Dominates

CoMD

L1-D Line Utilization < 50%

100
o
= 80
N
S 60
D
X 40
2
& 20
@]
0
0
©ARM 2017

| x 107 2% 10° 3x10° 4x10° 5% 10°
Time

movement! (NUMA)
'5
~ =
»n
L
=
.g. ~*-nowl,
8 -5-201801
Q.
102 T T T T T T T T T T T T T 1
0Q®) 'é’}® \\‘@ '(\‘Q® v?@ z"'© z‘@
Qs\' & Rt N S & *6}
S Q¢ & ® Q o &
& & o8 & &
S & & O ¢
9) o‘?
N

Source: Simon, Horst. "Why we need exascale and why we won't get there
by 2020." Opt. interconnects conf., Lawrence Berkeley National Laboratory,
Santa Fe. 2013.

ARM

Superfluous Data Movement Utilized Bandwidth

gl

Dark Bandwidth
©ARM 2017 ARM

By eliminating Dark Bandwidth, we can
make computing more efficient, enabling
performance gains despite the impending

end of Moore’s Law.

ARM

6

How we get data

~ |28 bits / cycle

CPUO

©ARM 2017

—>

move

L1

TLB

L2

coherent
network

L3

fixed width bus
usually 64 + ECC

\D RAM

ARM

7

How we get data

move

~ |28 bits / cycle

CPUO L1

Oxfff (vi rtu)
TLB

©ARM 2017

L2

coherent
network

L3

fixed width bus
usually 64 + ECC

\D RAM

ARM

8

How we get data

~ |28 bits l/_c_ycle

©ARM 2017

CPUO

move

i
—
-

L2

Ac-c'ess TLB /
LI1-D in parallel

coherent
network

L3

fixed width bus
usually 64 + ECC

\D RAM

ARM

9

How we get data

move

Translate

to Physical

~ |28 bits / cycle

CPUO

L1 =

Oxfff (vi rtu)
TLB

©ARM 2017

L2

coherent
network

L3

fixed width bus
usually 64 + ECC

\D RAM

ARM

How we get data

move (7or 1),

) fixed width bus
coherent usually 64 + ECC

Translate network
\DRAM

to Physical
~ |28 bits / cycle

L3

CPUO L1

Oxfff (virtu)
TLB

OxfOa34 (physical)

L2

ARM

0 ©ARM2017

How we get data

move (7or 1),

) fixed width bus
coherent usually 64 + ECC

Translate network
\DRAM

to Physical
ARM

~ |28 bits / cycle

L3

CPUO L1

Oxfff (virtu)
TLB

OxfOa34 (physical)

I ©ARM 2017

How we get data

move (7or 1),

) fixed width bus
coherent usually 64 + ECC

Translate network
\DRAM

to Physical
ARM

~ |28 bits / cycle
L3

CPUO L1

Oxfff (virtual)
TLB
Issue to

OxfO@a34 (physical) Network

12 ©ARM2017

How we get data

move (7or 1),

) fixed width bus
coherent usually 64 + ECC

Translate network
\DRAM

to Physical
ARM

~ |28 bits / cycle
L3

CPUO L1

Oxfff (virtual)
TLB
Issue to

OxfO@a34 (physical) Network

I3 ©ARM2017

How we get data

move (7or 1),

) fixed width bus
coherent usually 64 + ECC

Translate network
to Physical
\DRAM
CPUO =] L1
Oxfff (virtual) Single cache line = 8
TLB requests of 8 bytes

. Issue to
OxfOa34 (physical) Network

~ |28 bits / cycle

ARM

4 ©ARM2017

15

Reuse Distance

= |f data within a cache line is used more than once, then the cache line is said to be

reused

= We need to answer: how many other cache lines are used in between accesses!?

CPUO

L1

L1

L2

©ARM 2017

ARM

16

Reuse Distance

= |f data within a cache line is used more than once, then the cache line is said to be

reused

= We need to answer: how many other cache lines are used in between accesses!?

©ARM 2017

CPUO

L1

CPU 1

L1

load l—> IoadI

L2

ARM

17

Reuse Distance

= |f data within a cache line is used more than once, then the cache line is said to be

reused

= We need to answer: how many other cache lines are used in between accesses!?
= Blue has a reuse distance of one if the metric is in units of a cache line

©ARM 2017

CPUO

L1

CPU 1

L1

L2

load l—P Ioadl-b Ioadl

ARM

Utilization

= How much of a cache line is used before it is evicted?

 We moved all the data labeled waste through that entire maze of wires
only to evict it again!!

CPU 1

Needed Wasted

18 ©ARM2017 ARM

Dance of reuse and utilization

EV|ct L|n ,

Fetch Line

t4 Wasted

2

19 ©ARM2017

ARM

A balanced system

= Dark bandwidth results in:

- More energy
= Higher latency

« Less usable bandwidth between levels of cache hierarchy

CPU 1

20

©ARM 2017

L1

L2

L3

Memory
Fabric

ARM

Solutions

2| ©ARM 2017 ARM

Moving Instructions to Data — Map Reduce

MapReduce Data access
small % of
page
nction — Data
\ .| Data

22 ©ARM2017

ARM

Moving Instructions to Data — Pointer Chasing

Data

il N

pointer chase

bounce from one 4k page to the next /

function

Data

V\

Data

pointer chase

_

23 ©ARM2017

ARM

Processing In-/Near-Memory

core

24 ©ARM2017

@

N

L1

&

IN-memory
task (multiple ops)

L2

PINM

B

]
}e Large data movement decrease %|

ARM

Gather-Scatter

cache lines

=

i

.
core |/ 1
AIJ ‘] L1
| “1
o~
/7

&

gather

L2

A) No reduction in data movement

/\DRAM
/

4-'

Page

|< 'B) Lots of data movement reduction

core Jé 5

L1

25 ©ARM2017

-

L2

age - S=

=
DRAM

HBM

\E}\ "’
__/ N~
m 0~

Page - S

ARM

26

Near-memory Gather-Scatter

Gather/N<I>

map function

Programmer
Provided
Function

©ARM 2017

oo O & W N

a

b

—-
-

-

Feed Only Dense DataTo Core

ARM

Data Reduction Potential (preview of MEMSYS|7)

9

>

> 60
A

g 50
<

c 40
O

C'EJ 30
=

=

= 20
9

S 10
O

Q

© 0
X Random Array Gather CoMD LULESH

27 ©ARM2017 ARM

*Cycles based on simulation model with 4-cycle L1-D latency, 14-cycle L2 latency

28

“ldeal” PINM Characteristics

= Many small cores near memory
= Maximize number of independent functions
= Minimize communications between PINM units function

= Minimize communication to main cores

= Determine address and bounds of data to be .
operated on as early as possible to issue to
memory

©ARM 2017

Data

PINM

8

PINM

Data

PINM

Data

ARM

Lost in Translation

29 ©ARM2017 ARM

30

Two Options

= Contiguous pages / huge pages
= Well suited for some things, but not for
others

= PINM devices need more hardware for
coherence/synchronization

= Pointer chasing outside page not easy

lots of

cores Huge Page

©ARM 2017

= Small pages

= Suited for all applications

= PINM device simpler

= page level synchronization

= |imited coherence

= Pointer chasing outside of page not easy,

maybe IOMMU?
core
page core
page
core — core

ARM

How Bad Can It Be?

CoMD A SNAP

= daxpy v streams

U
O

o dgemm g XSBench
PINM Targets A gUps
v

R

Translation Cycles
Execution Cycles
o
o
>

hpgmg

0.5} g s O lulesh
5 © 8
Q v o) ; o mcb
0 5 10 15

PINM Threads
31 ©ARM 2017 ARM

A more addressable
future for accelerators

32 ©ARM20I7 ARM

* Virtual memory started b/c of lack of available
memory vs. storage

* Programmers wrote code that manually
folded/unfolded to storage

* Huge controversy existed b/c all code at the time
was written this way — Automatic folding hardware
was ~25% slower than manual folding

“In ceasing to expend energy (item 1) in a process whose main result is to make
programs less fit to run on other machine configurations (item 2), or to run in
company with other programs (item 3), or to run with temporarily reduced resources
(item 4), we do more than reduce costs; we remove self-created obstacles which today
are impeding the development of needed types of systems”

- D. Sayre, IBM Yorktown Research (1969)
33 ©ARM 2017 ARM

1970 - The Circle of Tech - “Self Created Obstacles”

: R
SREREREEE -

S
SN -

SHNRRREEE -

unnu'euc .
llllLlln .

ARM

34 ©ARM20I17

2017 - The Circle of Tech - “Self Created Obstacles”

35 ©ARM20I17 ARM

Can we live with virtual memory?

= Yes, but for how long!?
= Data structures for specific systems (embed “In ceasing to expend energy (item 1)
translations) in a process whose main result is to
make programs less fit to run on
other machine configurations (item
2), or to run in company with other
programs (item 3), or to run with
temporarily reduced resources (item

4), we do more than reduce costs; we
» Fundamental flaw in page-based virtual memory | remove self-created obstacles which

= It’s not scalable — single point bottleneck today are impeding the development
of needed types of systems”

= Abstractions to made to extend VM try to make it
better, but really make it worse (unified virtual
addressing).

= Bigger hardware page cache’s only mean extending the
current system for a few years at best.

= Inherently local (page cache needed)

= Accelerators attached as an afterthought, the future is
heterogeneous. - D. Sayre, IBM Yorktown Research

= Many solutions to reducing data movement hobbled by (1969)

translation machinery.

36 ©ARM2017 ARM

Conclusions

= Every byte move costs: memory

- Energy, Latency, Bandwidth = Lightweight, simple, near memory

. rocessors
= A balanced system could consist of: P

= Heavyweight throughput cores
= DMA / gather/scatter engines near

Getting there requires changing the way we do virtual memory

Compute Intensity RUD CLU Proposed Ideal Processing Modality
Low High Low PINM

High High Low Data Rearrangement

'Low / High High High PINM |
Low / High Low Low Data Rearrangement

Low / High Low High Current Processor Pipeline

Twitter: @jonathan_beard
vy Thanks for listening!! ARM

