
Copyright © 2018 Arm Limited

Reducing Dark Bandwidth
Through Data Reduction

Near Memory
Jonathan Beard

Staff Research Engineer, Arm Inc.
UCAR SEA, Boulder, CO

4 April 2018

Twitter: @jonathan_beard

© Arm 2018 2

Disclaimer
This is a research project, not product.

Any changes to architecture must go through the standard architecture review board process

Nothing within this presentation should be taken as a direction of future architecture or
product plans for Arm Inc/Ltd.

Please ask questions related to the presentation!

© Arm 2018 3

The lunch line is closed

Ø Put simply, frequency scaling is not a solution

Ø Performance curve must continue, we need FLOPS/IOPS/etc.

Ø As a consequence:
Ø Core counts on chip and accelerators on chip will become more numerous

Ø Integration will be closer, move onto system-on-chip (and multi-part chip)

Ø What used to move off-chip before now moves on-chip, further stressing on chip interconnects

Ø Increased compute density of the on-chip demands even more off-chip data movement bandwidth

Ø As a result, less memory bandwidth/cache/interconnect capacity per core on average….

Ø Core problem:
Ø We can build machines with tons of FLOPS, but we can’t feed them

Ø Data movement is a key problem…guess what, we move a lot of data we don’t need to move

© Arm 2018 4

Trends
Performance Expectation

Power Expectation

data source: https://goo.gl/bb6wZW

https://goo.gl/bb6wZW

© Arm 2018 5

More cores, more wires, more power

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●
●
●

●
●

●

●●
●

●
●
●

●

●

●
● ●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●●
●
●
●
●●
●
●
●
●●
●

●●

●

●

●

●
●
●

●●● ●

●
●
●
●

1980 1990 2000 2010

0.5
1

5
10

50
100

Year

Av
g.
(W

at
t)
/S
oc
ke
t

Power
src: https://goo.gl/jUnqYZ

More cores = more wires

data source: https://goo.gl/bb6wZW

https://goo.gl/jUnqYZ
https://goo.gl/bb6wZW

© Arm 2018 6

Cores are reuse optimized

core L2L1
L3

coherent	
network

super	
fast fast not	

slow

DRAM

Disk

slow

carrier	
pigeon

© Arm 20187

Text 54pt sentence case

Dark Bandwidth:
Data moved throughout the memory
hierarchy that is not used after it is
moved.

© Arm 2018 8

Superfluous Data Movement

Dark Bandwidth

Utilized Bandwidth

© Arm 2018 9

How we get data
move -16(%r1), %r2

CPU L2L1
L3B

u
sTLB Memory	

Controller MEM

© Arm 2018 10

How we get data
move -16(%r1), %r2

CPU L2L1
L3B

u
sTLB Memory	

Controller MEM

0xfff (virtual)

© Arm 2018 11

CPU L2L1
L3B

u
sTLB Memory	

Controller MEM

How we get data
move -16(%r1), %r2

0xfff (virtual)

Access TLB / L1-D
in parallel

Core - L1: 128-512b access

© Arm 2018 12

CPU L2L1
L3B

u
sTLB Memory	

Controller MEM

How we get data
move -16(%r1), %r2

Translate
to Physical

0xfff (virtual)

© Arm 2018 13

How we get data

CPU L2L1
L3B

u
sTLB Memory	

Controller MEM

move -16(%r1), %r2

Translate
to Physical

0xfff (virtual)

0xf0a34 (physical)

© Arm 2018 14

How we get data

CPU L2L1
L3B

u
sTLB Memory	

Controller MEM

move -16(%r1), %r2

Translate
to Physical

0xfff (virtual)

0xf0a34 (physical)

Use Physical
Address, 512b

access

© Arm 2018 15

How we get data

CPU L2L1
L3B

u
sTLB Memory	

Controller MEM

move -16(%r1), %r2

Translate
to Physical

0xfff (virtual)

0xf0a34 (physical)

Issue to
Network

© Arm 2018 16

How we get data

CPU L2L1
L3B

u
sTLB Memory	

Controller MEM

move -16(%r1), %r2

Translate
to Physical

0xfff (virtual)

0xf0a34 (physical)

Issue to
Network

Send to L3

© Arm 2018 17

CPU L2L1
L3B

u
sTLB Memory	

Controller MEM

Send Request
to MC

How we get data
move -16(%r1), %r2

Translate
to Physical

0xfff (virtual)

0xf0a34 (physical)

Issue to
Network

Send to L3

© Arm 2018 18

CPU L2L1
L3B

u
sTLB Memory	

Controller MEM

How we get data
move -16(%r1), %r2

Translate
to Physical

0xfff (virtual)

0xf0a34 (physical)

Issue to
Network

Send to L3

Multiple requests for
1 cache line

Send Request
to MC

© Arm 2018 19

Reuse Distance
If data within a cache line is used more than once, then the cache line is said to be reused

We need to answer: how many other cache lines are used in between accesses?

CPU	0

CPU	1

L2

L1

L1

load

© Arm 2018 20

Reuse Distance
If data within a cache line is used more than once, then the cache line is said to be reused

We need to answer: how many other cache lines are used in between accesses?

CPU	0

CPU	1

L2

L1

L1

load load

© Arm 2018 21

Reuse Distance
If data within a cache line is used more than once, then the cache line is said to be reused

We need to answer: how many other cache lines are used in between accesses?

CPU	0

CPU	1

L2

L1

L1

load load load

Blue has a
reuse distance
of one if the
metric is in
units of a
cache line

© Arm 2018 22

Utilization
How much of a cache line is used before it is evicted?

We moved all the data labeled waste through that entire maze of wires only to evict it again!!

CPU	1 L1

WastedNeeded

© Arm 2018 23

Some Real Applications – Linked List

0%

5%

10%

15%

20%

25%

30%

L1D-0 L1D-1 L1D-2 L1D-3 L2

Ca
ch

el
in

e
U

til
iza

tio
n

© Arm 2018 24

Some Real Applications – Others

0%

5%

10%

15%

20%

25%

30%

L1D-0 L1D-1 L1D-2 L1D-3 L2

Ca
ch

el
in

e
U

til
iza

tio
n

W
asted

Used

Unused cache data
• GUPS: 80%
• CoMD: 50%
• mcb: 40%
• LULESH: 20%
• DGEMM: 10%

Cache Line
Utilization

W
asted

Used

© Arm 2018 25

Dance of reuse and utilization

Wastedt1

Wastedt2

Wastedt3L1

L2

Time

Evict Line Fetch Line

Wastedt4

Evict Line

© Arm 2018 26

Dark Bandwidth
Ø Here’s what we’re actually getting (pointer-chasing application)

Ø Avg. 12.5% line utilization

Ø Prefetcher makes worse

Core L1 L2 Controller HBM

bus Aggregate:	308	GB/s

120	GB/s

30	GB/s	-	60	GB/s

60	GB/s

reuse	op>mized

© Arm 2018 27

Dark Bandwidth
Ø Here’s what we’re actually getting (pointer-chasing application)

Ø Avg. 12.5% line utilization

Ø Prefetcher makes worse

Core L1 L2 Controller HBM

bus
Aggregate:
144 GB/s

~54 GB/s

~15 GB/s

~18 GB/s

reuse optimized

© Arm 201828

Text 54pt sentence case

Dark Bandwidth: Dark Bandwidth:
Unused data moved throughout the
memory hierarchy not at request of
programmer but because of hardware
design.

© Arm 2018 29

What this means for power

Ø Example numbers for magnitude,
not actual energy #’s.

core L2L1

DRAM

L3

coherent
network

M
C

1pJ/b.12	pJ/b

40-70pJ/b

SRAM:	.21pJ/b

.31	pJ/b

1pJ/b

© Arm 2018 30

What this means for power

core L2L1

DRAM

L3

coherent
network

M
C

256pJ/
256b

30pJ/
256b

20nJ/Access

SRAM:	55pJ/256b

64b	DP/20pJ

Ø Example numbers for magnitude,
not actual energy #’s.

© Arm 2018 31

What this means for time to solution

Ø Example numbers for magnitude,
not actual cycle #’s.

core L2L1

DRAM

L3

coherent
network

M
C

50	cycles

26	cycles

L1D	
4-cycles

512b	reg
2-cycles	(256b/c)

L2	
15-cycles L3	30-cycles

© Arm 201832

Text 54pt sentence case Extant options to solve the problem

© Arm 2018 33

Conventional Gather/Scatter

L2

DRAM
core

L1

3	cache	lines

gather

Page
L3

© Arm 2018 34

Improving on scatter/gather

L1
L2
L3 § Reduce cache

misses for sparse
workloads

§ Improve Bandwidth
Utilization

Random Gather Comparison

Vect w/Gather

Scalar Assembly

Vect w/o Gather

SPiDRE

© Arm 2018 35

Programmable DMA
Ø Generally limited to page gather/move/scatter

Ø Usually coherent (lots of transactions), wastes
bus utilization (i.e., all traffic goes through
coherent network)

Ø Often limited when it comes to finer
granularity

Ø Typically no persistent state

Ø Not solving quite the same problem!

L2core L1 L3

MC

DMA

SATA

Toy Example:

© Arm 2018 36

What we need to do

core L2L1

DRAM

L3

coherent	
network

M
C

SPiDRE

Reduce dark
bandwidth
across the
path in bold

© Arm 2018 37

Sparse Data Reduction (mechanisms)
In-Memory Gather-ScatterStandard Gather-Scatter (In Core)

SPDRE

• Smaller binary (e.g., single gather vs.
multiple loads)

• Improved Cache Line Utilization
• Reduced Overall Data Movement

• Smaller binary (e.g., single gather vs.
multiple loads)

© Arm 2018 38

SPiDRE in words
Decoupling access and execute
The idea
Ø Programmers know what data they want

(usually), “SQL for Memory”

Ø Finding Compressed Sparse Row manipulations
for new problems often takes a lot of time (bad
for productivity)

Ø Why not build an interface that allows gathering
(potentially) in any device of only the data you
(the programmer) needs

Ø “Bulk” byte-addressed memory

Ø Doesn’t break coherence…with some caveats

Ø Can create multiple windows of original
segment

Map function

Gather

© Arm 201839

Text 54pt sentence case The SPiDRE

© Arm 2018 40

Programming SPiDRE (one approach)
User inserted allocate (new
virtual and physical space)

User inserted rearrange function

Synchronize S’ -> S

free

© Arm 2018 41

The big picture
Core HBML1-D L2

N
etw

ork

controller

core

work	Q

out	Q

ctl ctl

agen	/	ld	q

user	
data

bloom	
filter

forward	
funcAon

reverse	
funcAon

meta-
data

4k

S’

user	
data

S forward	
mapping	
funcAon

reverse	
mapping	
funcAon

Opera&on	A:	Send	Command

32	insn	(4-
byte	

encoding)

Opera&on	B:	Complete	Opera&on

Opera&on	C:	Syncroniza&on
What data you want…

© Arm 2018 42

The big picture
Core HBML1-D L2

N
etw

ork

controller

core

work	Q

out	Q

ctl ctl

agen	/	ld	q

user	
data

bloom	
filter

forward	
funcAon

reverse	
funcAon

meta-
data

4k

S’

user	
data

S forward	
mapping	
funcAon

reverse	
mapping	
funcAon

Opera&on	A:	Send	Command

32	insn	(4-
byte	

encoding)

Opera&on	B:	Complete	Opera&on

Opera&on	C:	Syncroniza&on
What data you want…

© Arm 2018 43

The big picture
Core HBML1-D L2

N
etw

ork

controller

core

work	Q

out	Q

ctl ctl

agen	/	ld	q

user	
data

bloom	
filter

forward	
funcAon

reverse	
funcAon

meta-
data

4k

S’

user	
data

S forward	
mapping	
funcAon

reverse	
mapping	
funcAon

Opera&on	A:	Send	Command

32	insn	(4-
byte	

encoding)

Opera&on	B:	Complete	Opera&on

Opera&on	C:	Syncroniza&on

Where to put data
back to (scatter)

© Arm 2018 44

The big picture
Core HBML1-D L2

N
etw

ork

controller

core

work	Q

out	Q

ctl ctl

agen	/	ld	q

user	
data

bloom	
filter

forward	
funcAon

reverse	
funcAon

meta-
data

4k

S’

user	
data

S forward	
mapping	
funcAon

reverse	
mapping	
funcAon

Opera&on	A:	Send	Command

32	insn	(4-
byte	

encoding)

Opera&on	B:	Complete	Opera&on

Opera&on	C:	Syncroniza&on

Where to put data
back to (scatter)

© Arm 2018 45

The big picture
Core HBML1-D L2

N
etw

ork

controller

core

work	Q

out	Q

ctl ctl

agen	/	ld	q

user	
data

bloom	
filter

forward	
funcAon

reverse	
funcAon

meta-
data

4k

S’

user	
data

S forward	
mapping	
funcAon

reverse	
mapping	
funcAon

Opera&on	A:	Send	Command

32	insn	(4-
byte	

encoding)

Opera&on	B:	Complete	Opera&on

Opera&on	C:	Syncroniza&on

Where to put data
back to (scatter)

© Arm 2018 46

The big picture
Core HBML1-D L2

N
etw

ork

controller

core

work	Q

out	Q

ctl ctl

agen	/	ld	q

user	
data

bloom	
filter

forward	
funcAon

reverse	
funcAon

meta-
data

4k

S’

user	
data

S forward	
mapping	
funcAon

reverse	
mapping	
funcAon

Opera&on	A:	Send	Command

32	insn	(4-
byte	

encoding)

Opera&on	B:	Complete	Opera&on

Opera&on	C:	Syncroniza&on

Save which data are
modified in S’. This
enables more
efficient
synchronization.

© Arm 2018 48

The big picture
Core HBML1-D L2

N
etw

ork

controller

core

work	Q

out	Q

ctl ctl

agen	/	ld	q

user	
data

bloom	
filter

forward	
funcAon

reverse	
funcAon

meta-
data

4k

S’

user	
data

S forward	
mapping	
funcAon

reverse	
mapping	
funcAon

Opera&on	A:	Send	Command

32	insn	(4-
byte	

encoding)

Opera&on	B:	Complete	Opera&on

Opera&on	C:	Syncroniza&on

A bit of meta data,
sizing, etc.

© Arm 2018 49

The big picture
Core HBML1-D L2

N
etw

ork

controller

core

work	Q

out	Q

ctl ctl

agen	/	ld	q

user	
data

bloom	
filter

forward	
funcAon

reverse	
funcAon

meta-
data

4k

S’

user	
data

S forward	
mapping	
funcAon

reverse	
mapping	
funcAon

Opera&on	A:	Send	Command

32	insn	(4-
byte	

encoding)

Opera&on	B:	Complete	Opera&on

Opera&on	C:	Syncroniza&on

SPiDRE could be on any number
of devices, assuming a
compatible implementation.

© Arm 2018 50

The big picture
Core HBML1-D L2

N
etw

ork

controller

core

work	Q

out	Q

ctl ctl

agen	/	ld	q

user	
data

bloom	
filter

forward	
funcAon

reverse	
funcAon

meta-
data

4k

S’

user	
data

S forward	
mapping	
funcAon

reverse	
mapping	
funcAon

Opera&on	A:	Send	Command

32	insn	(4-
byte	

encoding)

Opera&on	B:	Complete	Opera&on

Opera&on	C:	Syncroniza&on

Coherence L
Ø In this work, API flushes via cache

maintenance operations

Ø Actual hardware can use ACP port to
flush modified lines before issuing
operation to SPDRE

Ø More efficient implementations are
possible

Ø Non-cached remote object schemes
could reduce need for flushing

S marked as read
only while S’ exists

© Arm 2018 51

Sparse translation through IOMMU

PINM Targets

GPGPU Targets

© Arm 2018 52

The big picture
Core HBML1-D L2

N
etw

ork

controller

core

work	Q

out	Q

ctl ctl

agen	/	ld	q

user	
data

bloom	
filter

forward	
funcAon

reverse	
funcAon

meta-
data

4k

S’

user	
data

S forward	
mapping	
funcAon

reverse	
mapping	
funcAon

Opera&on	A:	Send	Command

32	insn	(4-
byte	

encoding)

Opera&on	B:	Complete	Opera&on

Opera&on	C:	Syncroniza&on
Must be allocated to be
contiguous in virtual and
physical space…

© Arm 201853

Text 54pt sentence case Sim Setup & Results

© Arm 2018 54

Emulation Environment (SPiDRE)

© Arm 2018 55

Fixed Stride (1GB data set) - Gather SPiDRE

No SPiDRE SPiDRE

Miss Count (×107)
051015

Miss Count (×107)
0 5 10 15

Stride

4
8
16
32
64
128
256
512
1024
2048
4096
8192
16384
32768
65536

L1 Cache

© Arm 2018 56

Fixed Stride (1GB data set) - Gather SPiDRE

No SPiDRE SPiDRE

Miss Count (×107)
0510

Miss Count (×107)
0 5 10

Stride

4
8
16
32
64
128
256
512
1024
2048
4096
8192
16384
32768
65536

L2 Cache

© Arm 2018 57

Fixed Stride (1GB data set) - Gather SPiDRE

No SPiDRE SPiDRE

Miss Count (×107)
0510

Miss Count (×107)
0 5 10

Stride

4
8
16
32
64
128
256
512
1024
2048
4096
8192
16384
32768
65536

L3 Cache

© Arm 2018 58

Random Gather - SPiDRE

Average cache misses from 1M
executions of a Randomized
Gather Across 1GB Data Set.

No SPiDRE SPiDRE

© Arm 2018 59

HPC Mini-apps
All single threaded executions for initial study

CoMD
• Used Lennard-Jones potentials

• Simple port to gather within the main loop

LULESH
• Multiple ports with varying rearrange to use distances

• Varied size and iteration count

• Demonstrated sparse data reduction combined with programmer placed pre-fetch hints

© Arm 2018 60

CoMD Naïve Port to SPiDRE

§ ~15% Reduction in
L1D Misses

No SPiDRE SPiDRE

© Arm 2018 61

LULESH ported to SPiDRE

§ L1D Miss Counts
§ w/prefetch ~60% Reduction
§ w/no prefetch ~40% Reduction

No SPiDRE SPiDRE

© Arm 2018 62

Early Results
Emulator Based - Latency

© Arm 2018 63

Speed-up by average stride

0 200 400 600 800 1000

0.0

0.5

1.0

1.5

2.0

Stride (Bytes)

M
ea
su
re
d
Sp
ee
d-

up

Measured SPiDRE Speed-up (8GB Data Set)

© Arm 2018 64

Early Results

• Emulator on actual
hardware:

– 2x-5x speed-up for
random access

– ~1.4 – 2.6x speed-up
for Page Rank

– ~2x speed-up for
LULESH

Speedup

• Full system gem5 (early results)
– ~10x speed-up HPCG

core L2L1

DRAM

L3
coherent	
network

M
C

SPiDRE

Out-of-order Core

In-order Core, No Cache

© Arm 2018 65

Conclusions

Ø Translation for near-memory compute (inc. gather/scatter)

Ø Programming models, compilers (incorporate cost models with llvm, etc.)

Ø More full system simulation

Future work

Ø SPiDRE is an interface and hardware acceleration infrastructure to gather data near
memory/storage and make it dense (reducing bandwidth utilization, enabling more vectorization)

Ø We’ve shown a 2-10x speedup and significant data movement reduction on several applications,
definitely more room (some cases greater than 2x)

Ø Not shown, increase in vectorization….but pretty obvious.

Questions…
Twitter: @jonathan_beard

Email: jonathan.beard@arm.com

