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Disclaimer 
This is a research project, not product.

Any changes to architecture must go through the standard architecture review board process

Nothing within this presentation should be taken as a direction of future architecture or 
product plans for Arm Inc/Ltd. 

Please ask questions related to the presentation! 
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The lunch line is closed 

Ø Put simply, frequency scaling is not a solution

Ø Performance curve must continue, we need FLOPS/IOPS/etc.

Ø As a consequence:
Ø Core counts on chip and accelerators on chip will become more numerous 

Ø Integration will be closer, move onto system-on-chip (and multi-part chip)

Ø What used to move off-chip before now moves on-chip, further stressing on chip interconnects

Ø Increased compute density of the on-chip demands even more off-chip data movement bandwidth

Ø As a result, less memory bandwidth/cache/interconnect capacity per core on average….

Ø Core problem:
Ø We can build machines with tons of FLOPS, but we can’t feed them

Ø Data movement is a key problem…guess what, we move a lot of data we don’t need to move
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Trends
Performance Expectation

Power Expectation

data source: https://goo.gl/bb6wZW

https://goo.gl/bb6wZW
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More cores, more wires, more power
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Cores are reuse optimized

core L2L1
L3

coherent	
network

super	
fast fast not	

slow

DRAM

Disk

slow

carrier	
pigeon
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Text 54pt sentence case

Dark Bandwidth: 
Data moved throughout the memory 
hierarchy that is not used after it is 
moved. 
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Superfluous Data Movement

Dark Bandwidth

Utilized Bandwidth
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How we get data
move -16(%r1), %r2

CPU L2L1
L3B

u
sTLB Memory	

Controller MEM
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How we get data
move -16(%r1), %r2

CPU L2L1
L3B

u
sTLB Memory	

Controller MEM

0xfff (virtual)
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CPU L2L1
L3B

u
sTLB Memory	

Controller MEM

How we get data
move -16(%r1), %r2

0xfff (virtual)

Access TLB / L1-D 
in parallel

Core - L1: 128-512b access
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CPU L2L1
L3B

u
sTLB Memory	

Controller MEM

How we get data
move -16(%r1), %r2

Translate 
to Physical

0xfff (virtual)
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How we get data

CPU L2L1
L3B

u
sTLB Memory	

Controller MEM

move -16(%r1), %r2

Translate 
to Physical

0xfff (virtual)

0xf0a34 (physical)
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How we get data

CPU L2L1
L3B

u
sTLB Memory	

Controller MEM

move -16(%r1), %r2

Translate 
to Physical

0xfff (virtual)

0xf0a34 (physical)

Use Physical 
Address, 512b 

access
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How we get data

CPU L2L1
L3B

u
sTLB Memory	

Controller MEM

move -16(%r1), %r2

Translate 
to Physical

0xfff (virtual)

0xf0a34 (physical)

Issue to 
Network
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How we get data

CPU L2L1
L3B

u
sTLB Memory	

Controller MEM

move -16(%r1), %r2

Translate 
to Physical

0xfff (virtual)

0xf0a34 (physical)

Issue to 
Network

Send to L3
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CPU L2L1
L3B

u
sTLB Memory	

Controller MEM

Send Request 
to MC

How we get data
move -16(%r1), %r2

Translate 
to Physical

0xfff (virtual)

0xf0a34 (physical)

Issue to 
Network

Send to L3
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CPU L2L1
L3B

u
sTLB Memory	

Controller MEM

How we get data
move -16(%r1), %r2

Translate 
to Physical

0xfff (virtual)

0xf0a34 (physical)

Issue to 
Network

Send to L3

Multiple requests for 
1 cache line

Send Request 
to MC
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Reuse Distance
If data within a cache line is used more than once, then the cache line is said to be reused

We need to answer:  how many other cache lines are used in between accesses?

CPU	0

CPU	1

L2

L1

L1

load 
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Reuse Distance
If data within a cache line is used more than once, then the cache line is said to be reused

We need to answer:  how many other cache lines are used in between accesses?

CPU	0

CPU	1

L2

L1

L1

load load 
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Reuse Distance
If data within a cache line is used more than once, then the cache line is said to be reused

We need to answer:  how many other cache lines are used in between accesses?

CPU	0

CPU	1

L2

L1

L1

load load load 

Blue has a 
reuse distance 
of one if the 
metric is in 
units of a 
cache line
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Utilization
How much of a cache line is used before it is evicted?

We moved all the data labeled waste through that entire maze of wires only to evict it again!!

CPU	1 L1

WastedNeeded
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Some Real Applications – Linked List
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Some Real Applications – Others
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Unused cache data
• GUPS: 80%
• CoMD: 50%
• mcb: 40%
• LULESH: 20%
• DGEMM: 10%

Cache Line 
Utilization

W
asted

Used
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Dance of reuse and utilization

Wastedt1

Wastedt2

Wastedt3L1

L2

Time

Evict Line Fetch Line

Wastedt4

Evict Line



© Arm 2018 26

Dark Bandwidth
Ø Here’s what we’re actually getting (pointer-chasing application)

Ø Avg. 12.5% line utilization

Ø Prefetcher makes worse

Core L1 L2 Controller HBM

bus Aggregate:	308	GB/s

120	GB/s

30	GB/s	-	60	GB/s

60	GB/s

reuse	op>mized
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Dark Bandwidth
Ø Here’s what we’re actually getting (pointer-chasing application)

Ø Avg. 12.5% line utilization

Ø Prefetcher makes worse

Core L1 L2 Controller HBM

bus
Aggregate: 
144 GB/s

~54 GB/s

~15 GB/s

~18 GB/s

reuse optimized
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Text 54pt sentence case

Dark Bandwidth: Dark Bandwidth: 
Unused data moved throughout the 
memory hierarchy not at request of 
programmer but because of hardware 
design.
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What this means for power

Ø Example numbers for magnitude, 
not actual energy #’s.

core L2L1

DRAM

L3

coherent 
network

M
C

1pJ/b.12	pJ/b

40-70pJ/b

SRAM:	.21pJ/b

.31	pJ/b

1pJ/b
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What this means for power

core L2L1

DRAM

L3

coherent 
network

M
C

256pJ/
256b

30pJ/
256b

20nJ/Access

SRAM:	55pJ/256b

64b	DP/20pJ

Ø Example numbers for magnitude, 
not actual energy #’s.
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What this means for time to solution

Ø Example numbers for magnitude, 
not actual cycle #’s. 

core L2L1

DRAM

L3

coherent 
network

M
C

50	cycles

26	cycles

L1D	
4-cycles

512b	reg
2-cycles	(256b/c)

L2	
15-cycles L3	30-cycles
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Text 54pt sentence case Extant options to solve the problem
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Conventional Gather/Scatter

L2

DRAM
core

L1

3	cache	lines

gather

Page
L3
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Improving on scatter/gather

L1
L2
L3 § Reduce cache 

misses for sparse 
workloads

§ Improve Bandwidth 
Utilization

Random Gather Comparison

Vect w/Gather

Scalar Assembly

Vect w/o Gather

SPiDRE
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Programmable DMA
Ø Generally limited to page gather/move/scatter

Ø Usually coherent (lots of transactions), wastes 
bus utilization (i.e., all traffic goes through 
coherent network)

Ø Often limited when it comes to finer 
granularity

Ø Typically no persistent state

Ø Not solving quite the same problem! 

L2core L1 L3

MC

DMA

SATA

Toy Example:
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What we need to do

core L2L1

DRAM

L3

coherent	
network

M
C

SPiDRE

Reduce dark 
bandwidth 
across the 
path in bold
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Sparse Data Reduction (mechanisms)
In-Memory Gather-ScatterStandard Gather-Scatter (In Core)

SPDRE

• Smaller binary (e.g., single gather vs. 
multiple loads)

• Improved Cache Line Utilization
• Reduced Overall Data Movement

• Smaller binary (e.g., single gather vs. 
multiple loads)
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SPiDRE in words
Decoupling access and execute 
The idea
Ø Programmers know what data they want 

(usually), “SQL for Memory”

Ø Finding Compressed Sparse Row manipulations 
for new problems often takes a lot of time  (bad 
for productivity)

Ø Why not build an interface that allows gathering 
(potentially) in any device of only the data you 
(the programmer) needs

Ø “Bulk” byte-addressed memory

Ø Doesn’t break coherence…with some caveats

Ø Can create multiple windows of original 
segment

Map function

Gather
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Text 54pt sentence case The SPiDRE
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Programming SPiDRE (one approach)
User inserted allocate (new 
virtual and physical space)

User inserted rearrange function

Synchronize S’ -> S  

free
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The big picture
Core HBML1-D L2

N
etw

ork

controller

core

work	Q

out	Q

ctl ctl

agen	/	ld	q

user	
data

bloom	
filter

forward	
funcAon

reverse	
funcAon

meta-
data

4k

S’

user	
data

S forward	
mapping	
funcAon

reverse	
mapping	
funcAon

Opera&on	A:	Send	Command

32	insn	(4-
byte	

encoding)

Opera&on	B:	Complete	Opera&on

Opera&on	C:	Syncroniza&on
What data you want…
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Where to put data 
back to (scatter)
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The big picture
Core HBML1-D L2
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Opera&on	A:	Send	Command

32	insn	(4-
byte	

encoding)

Opera&on	B:	Complete	Opera&on

Opera&on	C:	Syncroniza&on

Save which data are 
modified in S’. This 
enables more 
efficient 
synchronization. 
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The big picture
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Opera&on	C:	Syncroniza&on

A bit of meta data, 
sizing, etc. 
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The big picture
Core HBML1-D L2
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Opera&on	A:	Send	Command

32	insn	(4-
byte	

encoding)

Opera&on	B:	Complete	Opera&on

Opera&on	C:	Syncroniza&on

SPiDRE could be on any number 
of devices, assuming a 
compatible implementation.
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The big picture
Core HBML1-D L2
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Opera&on	B:	Complete	Opera&on

Opera&on	C:	Syncroniza&on

Coherence L
Ø In this work, API flushes via cache 

maintenance operations

Ø Actual hardware can use ACP port to 
flush modified lines before issuing 
operation to SPDRE

Ø More efficient implementations are 
possible

Ø Non-cached remote object schemes 
could reduce need for flushing

S marked as read 
only while S’ exists
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Sparse translation through IOMMU

PINM Targets

GPGPU Targets
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The big picture
Core HBML1-D L2

N
etw

ork
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work	Q

out	Q

ctl ctl

agen	/	ld	q

user	
data

bloom	
filter

forward	
funcAon

reverse	
funcAon

meta-
data

4k

S’

user	
data

S forward	
mapping	
funcAon

reverse	
mapping	
funcAon

Opera&on	A:	Send	Command

32	insn	(4-
byte	

encoding)

Opera&on	B:	Complete	Opera&on

Opera&on	C:	Syncroniza&on
Must be allocated to be 
contiguous in virtual and 
physical space…
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Text 54pt sentence case Sim Setup & Results
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Emulation Environment (SPiDRE)
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Fixed Stride (1GB data set) - Gather SPiDRE
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Fixed Stride (1GB data set) - Gather SPiDRE
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Fixed Stride (1GB data set) - Gather SPiDRE
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Random Gather - SPiDRE

Average cache misses from 1M 
executions of a Randomized 
Gather Across 1GB Data Set. 

No SPiDRE SPiDRE
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HPC Mini-apps
All single threaded executions for initial study

CoMD
• Used Lennard-Jones potentials

• Simple port to gather within the main loop 

LULESH
• Multiple ports with varying rearrange to use distances

• Varied size and iteration count

• Demonstrated sparse data reduction combined with programmer placed pre-fetch hints
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CoMD Naïve Port to SPiDRE

§ ~15% Reduction in 
L1D Misses

No SPiDRE SPiDRE
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LULESH ported to SPiDRE

§ L1D Miss Counts
§ w/prefetch ~60% Reduction 
§ w/no prefetch ~40% Reduction

No SPiDRE SPiDRE
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Early Results
Emulator Based - Latency
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Speed-up by average stride 
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Measured SPiDRE Speed-up (8GB Data Set)
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Early Results

• Emulator on actual 
hardware:

– 2x-5x speed-up for 
random access

– ~1.4 – 2.6x speed-up 
for Page Rank

– ~2x speed-up for 
LULESH

Speedup

• Full system gem5 (early results)
– ~10x speed-up HPCG

core L2L1

DRAM

L3
coherent	
network

M
C

SPiDRE

Out-of-order Core

In-order  Core, No Cache
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Conclusions

Ø Translation for near-memory compute (inc. gather/scatter)

Ø Programming models, compilers (incorporate cost models with llvm, etc.)

Ø More full system simulation

Future work

Ø SPiDRE is an interface and hardware acceleration infrastructure to gather data near 
memory/storage and make it dense (reducing bandwidth utilization, enabling more vectorization)

Ø We’ve shown a 2-10x speedup and significant data movement reduction on several applications, 
definitely more room (some cases greater than 2x)

Ø Not shown, increase in vectorization….but pretty obvious. 

Questions…
Twitter: @jonathan_beard

Email: jonathan.beard@arm.com


