
Copyright	©	2017	Arm	Limited

The	Sparse	Data	
Reduction	Engine	
Chopping	Sparse	Data	one	byte	at	a	time	

Jonathan	Beard
Staff	Research	Engineer,	Arm	Inc.

​MEMSYS	2017

©	Arm	2017	2

Disclaimer	
​This	is	a	research	project,	not	product.

​Any	changes	to	architecture	must	go	through	the	standard	architecture	review	board	process

​Nothing	within	this	presentation	should	be	taken	as	a	direction	of	future	architecture	or	
product	plans	for	Arm	Inc/Ltd.	

​Please	ask	questions	related	to	the	presentation!	

©	Arm	2017	3

Data	movement	dominates	in	the	post-Moore	era
• Well	understood	problem,	computing	typically	takes	less	energy	than	moving	the	data									

(~2-80x).
• Solutions?	More	exotic	technologies?	
• Next	5-10	years?

• Building	up	and	out:	3D	stacked	memories	and	3D	stacked	compute	(maybe,	once	we	
have	better	design	tools)

• Non-volatiles	integrated	and	slowly	replacing	standard	volatile	memory	(due	to	lack	of	
refresh)

• Short	term:	an	architecture	explosion….

(micro+)Architecture	Renaissance

(Florence,	Italy)

©	Arm	2017	4

​Basic	Von	Neumann	
architecture

​A	compute	element

​A	memory	interface

©	Arm	2017	5

§ Caches added to
take advantage of re-
use distance

§ But what about apps
with large and/or
sparse accesses?

©	Arm	2017	6

​GPGPU

​Caches	take	advantage	of	
reuse

​Streaming	data

§ Caches added to
take advantage of re-
use distance

§ But what about apps
with large and/or
sparse accesses?

©	Arm	2017	7

​GPGPU

​Caches	take	advantage	of	
reuse

​Streaming	data

§ Caches added to
take advantage of re-
use distance

§ But what about apps
with large and/or
sparse accesses?None	of	these	architectures	

handles	sparse	data	well!

©	Arm	2017	8

Dance	of	reuse	and	utilization

Wastedt1

Wastedt2

Wastedt3L1

L2

Time

Evict	Line Fetch	Line

Wastedt4

Evict	Line

©	Arm	2017	9

Superfluous	data	movement

Wasted	Bandwidth

Utilized	Bandwidth

© Arm 201710

Text	54pt	sentence	case

Dark	Bandwidth:	
Data	moved	throughout	the	memory	
hierarchy	that	is	not	used	after	it	is	
moved.	

© Arm 201711

Text	54pt	sentence	case

Dark	Bandwidth:	Dark	Bandwidth:	
Unused	data	moved	throughout	the	
memory	hierarchy	not	at	request	of	
programmer	but	because	of	hardware	
design.

©	Arm	2017	12

Superfluous	data	movement

Dark	Bandwidth

Utilized	Bandwidth

©	Arm	2017	13

Abstract	system	layout

Core L1 L2 Controller HBM

bus
Aggregate:
320 GB/s

120 GB/s

30 GB/s - 60 GB/s

60 GB/s

reuse optimized

12.5-90%
transfer
utilized

30-90%
transfer
utilized

30-90%
transfer
utilized

©	Arm	2017	14

Abstract	system	layout

Core L1 L2 Controller HBM

bus
Aggregate:
144 GB/s

~54 GB/s

~15 GB/s

~18 GB/s

reuse optimized

© Arm 201715

Text	54pt	sentence	case Compacting	Data
First:	The	Alternatives

©	Arm	2017	16

Sparse	Data	Reduction	(mechanisms)
In-Memory	Gather-ScatterStandard	Gather-Scatter	(In	Core)

SPDRE

• Smaller	binary	(e.g.,	single	gather	vs.	
multiple	loads)

• Improved	Cache	Line	Utilization
• Reduced	Overall	Data	Movement

• Smaller	binary	(e.g.,	single	gather	vs.	
multiple	loads)

©	Arm	2017	17

Improving	on	scatter/gather

L1
L2
L3 § Reduce cache

misses for sparse
workloads

§ Improve Bandwidth
Utilization

Random	Gather	Comparison

©	Arm	2017	18

Programmable	DMA

Ø Generally	limited	to	page	gather/move/scatter

Ø Usually	coherent	(lots	of	transactions),	wastes	
bus	utilization	(i.e.,	all	traffic	goes	through	
coherent	network)

Ø Often	limited	when	it	comes	to	finer	
granularity

Ø Typically	no	persistent	state

Ø Not	solving	quite	the	same	problem!	

L2core L1 L3

MC

DMA

SATA

Toy	Example:

© Arm 201719

Text	54pt	sentence	case The	SPiDRE

©	Arm	2017	20

SPiDRE in	words
​Decoupling	access	and	execute	
The	idea
Ø Programmers	know	what	data	they	want	

(usually)

Ø Finding	Compressed	Sparse	Row	manipulations	
for	new	problems	often	takes	a	lot	of	time		(bad	
for	productivity)

Ø Why	not	build	an	interface	that	allows	gathering	
(potentially)	in	any	device	of	only	the	data	you	
(the	programmer)	needs

Ø “Bulk”	byte-addressed	memory

Ø Doesn’t	break	coherence…with	some	caveats

Ø Can	create	multiple	windows	of	original	
segment

Map	function

Gather

©	Arm	2017	21

Programming	SPiDRE (one	approach)
User	inserted	allocate	(new	
virtual	and	physical	space)

User	inserted	rearrange	function

Synchronize	S’	->	S		

free

©	Arm	2017	22

The	big	picture
Core HBML1-D L2

N
etw

ork

controller

core

work	Q

out	Q

ctl ctl

agen	/	ld	q

user	
data

bloom	
filter

forward	
funcAon

reverse	
funcAon

meta-
data

4k

S’

user	
data

S forward	
mapping	
funcAon

reverse	
mapping	
funcAon

Opera&on	A:	Send	Command

32	insn	(4-
byte	

encoding)

Opera&on	B:	Complete	Opera&on

Opera&on	C:	Syncroniza&on
What	data	you	want…

©	Arm	2017	23

The	big	picture
Core HBML1-D L2

N
etw

ork

controller

core

work	Q

out	Q

ctl ctl

agen	/	ld	q

user	
data

bloom	
filter

forward	
funcAon

reverse	
funcAon

meta-
data

4k

S’

user	
data

S forward	
mapping	
funcAon

reverse	
mapping	
funcAon

Opera&on	A:	Send	Command

32	insn	(4-
byte	

encoding)

Opera&on	B:	Complete	Opera&on

Opera&on	C:	Syncroniza&on
What	data	you	want…

©	Arm	2017	24

The	big	picture
Core HBML1-D L2

N
etw

ork

controller

core

work	Q

out	Q

ctl ctl

agen	/	ld	q

user	
data

bloom	
filter

forward	
funcAon

reverse	
funcAon

meta-
data

4k

S’

user	
data

S forward	
mapping	
funcAon

reverse	
mapping	
funcAon

Opera&on	A:	Send	Command

32	insn	(4-
byte	

encoding)

Opera&on	B:	Complete	Opera&on

Opera&on	C:	Syncroniza&on

Where	to	put	data	
back	to	(scatter)

©	Arm	2017	25

The	big	picture
Core HBML1-D L2

N
etw

ork

controller

core

work	Q

out	Q

ctl ctl

agen	/	ld	q

user	
data

bloom	
filter

forward	
funcAon

reverse	
funcAon

meta-
data

4k

S’

user	
data

S forward	
mapping	
funcAon

reverse	
mapping	
funcAon

Opera&on	A:	Send	Command

32	insn	(4-
byte	

encoding)

Opera&on	B:	Complete	Opera&on

Opera&on	C:	Syncroniza&on

Where	to	put	data	
back	to	(scatter)

©	Arm	2017	26

The	big	picture
Core HBML1-D L2

N
etw

ork

controller

core

work	Q

out	Q

ctl ctl

agen	/	ld	q

user	
data

bloom	
filter

forward	
funcAon

reverse	
funcAon

meta-
data

4k

S’

user	
data

S forward	
mapping	
funcAon

reverse	
mapping	
funcAon

Opera&on	A:	Send	Command

32	insn	(4-
byte	

encoding)

Opera&on	B:	Complete	Opera&on

Opera&on	C:	Syncroniza&on

Where	to	put	data	
back	to	(scatter)

©	Arm	2017	27

The	big	picture
Core HBML1-D L2

N
etw

ork

controller

core

work	Q

out	Q

ctl ctl

agen	/	ld	q

user	
data

bloom	
filter

forward	
funcAon

reverse	
funcAon

meta-
data

4k

S’

user	
data

S forward	
mapping	
funcAon

reverse	
mapping	
funcAon

Opera&on	A:	Send	Command

32	insn	(4-
byte	

encoding)

Opera&on	B:	Complete	Opera&on

Opera&on	C:	Syncroniza&on

Save	which	data	are	
modified	in	S’.	This	
enables	more	
efficient	
synchronization.	

©	Arm	2017	28

Bloom	filter	analysis
​Quick	and	simple	

Ø [image	to	right]	dots	are	our	
implementation,	line	is	theoretical

Ø With	4k	bits,	~22%	false	positive	rate,	
~1500	elements,	78%	reduction	in	
unnecessary	write-backs	at	N
granularity	(e.g.,	64-byte,	4K,	64K,	2M)

Ø Method	enables	variable	granularity	set	
at	allocation

Ø Bottom	line:	it’s	a	well	understood	
Bloom	filter,	enables	reduction	of	write-
back	on	synchronization

0 2000 4000 6000 8000 10000
0.0

0.2

0.4

0.6

0.8

1.0

Elements Inserted

Fa
lse

Po
sit
iv
e
Ra

te

©	Arm	2017	29

The	big	picture
Core HBML1-D L2

N
etw

ork

controller

core

work	Q

out	Q

ctl ctl

agen	/	ld	q

user	
data

bloom	
filter

forward	
funcAon

reverse	
funcAon

meta-
data

4k

S’

user	
data

S forward	
mapping	
funcAon

reverse	
mapping	
funcAon

Opera&on	A:	Send	Command

32	insn	(4-
byte	

encoding)

Opera&on	B:	Complete	Opera&on

Opera&on	C:	Syncroniza&on

A	bit	of	meta	data,	
sizing,	etc.	

©	Arm	2017	30

The	big	picture
Core HBML1-D L2

N
etw

ork

controller

core

work	Q

out	Q

ctl ctl

agen	/	ld	q

user	
data

bloom	
filter

forward	
funcAon

reverse	
funcAon

meta-
data

4k

S’

user	
data

S forward	
mapping	
funcAon

reverse	
mapping	
funcAon

Opera&on	A:	Send	Command

32	insn	(4-
byte	

encoding)

Opera&on	B:	Complete	Opera&on

Opera&on	C:	Syncroniza&on

SPiDRE could	be	on	any	number	
of	devices,	assuming	a	
compatible	implementation.

©	Arm	2017	31

The	big	picture
Core HBML1-D L2

N
etw

ork

controller

core

work	Q

out	Q

ctl ctl

agen	/	ld	q

user	
data

bloom	
filter

forward	
funcAon

reverse	
funcAon

meta-
data

4k

S’

user	
data

S forward	
mapping	
funcAon

reverse	
mapping	
funcAon

Opera&on	A:	Send	Command

32	insn	(4-
byte	

encoding)

Opera&on	B:	Complete	Opera&on

Opera&on	C:	Syncroniza&on

Coherence	L
Ø In	this	work,	API	flushes	via	cache	

maintenance	operations

Ø Actual	hardware	can	use	ACP	port	to	
flush	modified	lines	before	issuing	
operation	to	SPDRE

Ø More	efficient	implementations	are	
possible

Ø Non-cached	remote	object	schemes	
could	reduce	need	for	flushing

Smarked	as	read	
only	while	S’ exists

©	Arm	2017	32

Sparse	translation	through	IOMMU

PINM	Targets

GPGPU	Targets

©	Arm	2017	33

The	big	picture
Core HBML1-D L2

N
etw

ork

controller

core

work	Q

out	Q

ctl ctl

agen	/	ld	q

user	
data

bloom	
filter

forward	
funcAon

reverse	
funcAon

meta-
data

4k

S’

user	
data

S forward	
mapping	
funcAon

reverse	
mapping	
funcAon

Opera&on	A:	Send	Command

32	insn	(4-
byte	

encoding)

Opera&on	B:	Complete	Opera&on

Opera&on	C:	Syncroniza&on
Must	be	allocated	to	be	
contiguous	in	virtual	and	
physical	space…

© Arm 201734

Text	54pt	sentence	case

Sim	Setup	&	Results

©	Arm	2017	35

Simulation	Environment	(SPiDRE)

©	Arm	2017	36

Fixed	Stride	(1GB	data	set)	- Gather	SPiDRE

No SPiDRE SPiDRE

Miss Count (×107)
051015

Miss Count (×107)
0 5 10 15

Stride

4
8
16
32
64
128
256
512
1024
2048
4096
8192
16384
32768
65536

L1 Cache

©	Arm	2017	37

Fixed	Stride	(1GB	data	set)	- Gather	SPiDRE

No SPiDRE SPiDRE

Miss Count (×107)
0510

Miss Count (×107)
0 5 10

Stride

4
8
16
32
64
128
256
512
1024
2048
4096
8192
16384
32768
65536

L2 Cache

©	Arm	2017	38

Fixed	Stride	(1GB	data	set)	- Gather	SPiDRE

No SPiDRE SPiDRE

Miss Count (×107)
0510

Miss Count (×107)
0 5 10

Stride

4
8
16
32
64
128
256
512
1024
2048
4096
8192
16384
32768
65536

L3 Cache

©	Arm	2017	39

Random	Gather	- SPiDRE

Average	cache	misses	from	1M	
executions	of	a	Randomized	
Gather	Across	1GB	Data	Set.	

No	SPiDRE SPiDRE

©	Arm	2017	40

HPC	Mini-apps
​All	single	threaded	executions	for	initial	study

​CoMD

• Used	Lennard-Jones	potentials

• Simple	port	to	gather	within	the	main	loop	

​LULESH

• Multiple	ports	with	varying	rearrange	to	use	distances

• Varied	size	and	iteration	count

• Demonstrated	sparse	data	reduction	combined	with	programmer	placed	pre-fetch	hints

©	Arm	2017	41

CoMD Naïve	Port	to	SPiDRE

§ ~15% Reduction in
L1D Misses

No	SPiDRE SPiDRE

©	Arm	2017	42

LULESH	ported	to	SPiDRE

§ L1D Miss Counts
§ w/prefetch ~60% Reduction
§ w/no prefetch ~40% Reduction

No	SPiDRE SPiDRE

©	Arm	2017	43

Speed-up	by	average	stride	

0 200 400 600 800 1000

0.0

0.5

1.0

1.5

2.0

Stride (Bytes)

M
ea
su
re
d
Sp
ee
d-

up

Measured SPiDRE Speed-up (8GB Data Set)

©	Arm	2017	44

Conclusions

Ø Translation	for	near-memory	compute	(inc. gather/scatter)

Ø Programming	models

Ø Full	system	simulation

Future	work

Ø SPiDRE is	an	interface	and	hardware	acceleration	infrastructure	to	gather	data	near	
memory/storage	and	make	it	dense	(reducing	bandwidth	utilization,	enabling	more	vectorization)

Ø We’ve	shown	a	2x	speedup	and	significant	data	movement	reduction	on	several	applications,	
definitely	more	room	(some	special	cases	greater	than	2x)

Questions…
Twitter:	@jonathan_beard

Email:	jonathan.beard@arm.com

